1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
/**
* Copyright 2018-2024, XGBoost Contributors
*/
#include <gtest/gtest.h>
#include <xgboost/host_device_vector.h>
#include <xgboost/tree_updater.h>
#include <cstddef> // for size_t
#include <string>
#include <vector>
#include "../../../src/tree/common_row_partitioner.h"
#include "../../../src/tree/hist/expand_entry.h" // for MultiExpandEntry, CPUExpandEntry
#include "../collective/test_worker.h" // for TestDistributedGlobal
#include "../helpers.h"
#include "test_column_split.h" // for TestColumnSplit
#include "test_partitioner.h"
#include "xgboost/data.h"
namespace xgboost::tree {
namespace {
template <typename ExpandEntry>
void TestPartitioner(bst_target_t n_targets) {
std::size_t n_samples = 1024, base_rowid = 0;
bst_feature_t n_features = 1;
Context ctx;
ctx.InitAllowUnknown(Args{});
CommonRowPartitioner partitioner{&ctx, n_samples, base_rowid, false};
ASSERT_EQ(partitioner.base_rowid, base_rowid);
ASSERT_EQ(partitioner.Size(), 1);
ASSERT_EQ(partitioner.Partitions()[0].Size(), n_samples);
auto Xy = RandomDataGenerator{n_samples, n_features, 0}.GenerateDMatrix(true);
std::vector<ExpandEntry> candidates{{0, 0}};
candidates.front().split.loss_chg = 0.4;
auto cuts = common::SketchOnDMatrix(&ctx, Xy.get(), 64);
for (auto const& page : Xy->GetBatches<SparsePage>()) {
GHistIndexMatrix gmat(page, {}, cuts, 64, true, 0.5, ctx.Threads());
bst_feature_t const split_ind = 0;
common::ColumnMatrix column_indices;
column_indices.InitFromSparse(page, gmat, 0.5, ctx.Threads());
{
auto min_value = gmat.cut.MinValues()[split_ind];
RegTree tree{n_targets, n_features};
CommonRowPartitioner partitioner{&ctx, n_samples, base_rowid, false};
if constexpr (std::is_same_v<ExpandEntry, CPUExpandEntry>) {
GetSplit(&tree, min_value, &candidates);
} else {
GetMultiSplitForTest(&tree, min_value, &candidates);
}
partitioner.UpdatePosition<false, true>(&ctx, gmat, column_indices, candidates, &tree);
ASSERT_EQ(partitioner.Size(), 3);
ASSERT_EQ(partitioner[1].Size(), 0);
ASSERT_EQ(partitioner[2].Size(), n_samples);
}
{
CommonRowPartitioner partitioner{&ctx, n_samples, base_rowid, false};
auto ptr = gmat.cut.Ptrs()[split_ind + 1];
float split_value = gmat.cut.Values().at(ptr / 2);
RegTree tree{n_targets, n_features};
if constexpr (std::is_same_v<ExpandEntry, CPUExpandEntry>) {
GetSplit(&tree, split_value, &candidates);
} else {
GetMultiSplitForTest(&tree, split_value, &candidates);
}
partitioner.UpdatePosition<false, true>(&ctx, gmat, column_indices, candidates, &tree);
{
auto left_nidx = tree.LeftChild(RegTree::kRoot);
auto const& elem = partitioner[left_nidx];
ASSERT_LT(elem.Size(), n_samples);
ASSERT_GT(elem.Size(), 1);
for (auto& it : elem) {
auto value = gmat.cut.Values().at(gmat.index[it]);
ASSERT_LE(value, split_value);
}
}
{
auto right_nidx = tree.RightChild(RegTree::kRoot);
auto const& elem = partitioner[right_nidx];
for (auto& it : elem) {
auto value = gmat.cut.Values().at(gmat.index[it]);
ASSERT_GT(value, split_value);
}
}
}
}
}
} // anonymous namespace
TEST(QuantileHist, Partitioner) { TestPartitioner<CPUExpandEntry>(1); }
TEST(QuantileHist, MultiPartitioner) { TestPartitioner<MultiExpandEntry>(3); }
namespace {
template <typename ExpandEntry>
void VerifyColumnSplitPartitioner(bst_target_t n_targets, size_t n_samples,
bst_feature_t n_features, size_t base_rowid,
std::shared_ptr<DMatrix> Xy, float min_value, float mid_value,
CommonRowPartitioner const& expected_mid_partitioner) {
auto dmat =
std::unique_ptr<DMatrix>{Xy->SliceCol(collective::GetWorldSize(), collective::GetRank())};
Context ctx;
ctx.InitAllowUnknown(Args{});
std::vector<ExpandEntry> candidates{{0, 0}};
candidates.front().split.loss_chg = 0.4;
auto cuts = common::SketchOnDMatrix(&ctx, dmat.get(), 64);
for (auto const& page : Xy->GetBatches<SparsePage>()) {
GHistIndexMatrix gmat(page, {}, cuts, 64, true, 0.5, ctx.Threads());
common::ColumnMatrix column_indices;
column_indices.InitFromSparse(page, gmat, 0.5, ctx.Threads());
{
RegTree tree{n_targets, n_features};
CommonRowPartitioner partitioner{&ctx, n_samples, base_rowid, true};
if constexpr (std::is_same_v<ExpandEntry, CPUExpandEntry>) {
GetSplit(&tree, min_value, &candidates);
} else {
GetMultiSplitForTest(&tree, min_value, &candidates);
}
partitioner.UpdatePosition<false, true>(&ctx, gmat, column_indices, candidates, &tree);
ASSERT_EQ(partitioner.Size(), 3);
ASSERT_EQ(partitioner[1].Size(), 0);
ASSERT_EQ(partitioner[2].Size(), n_samples);
}
{
RegTree tree{n_targets, n_features};
CommonRowPartitioner partitioner{&ctx, n_samples, base_rowid, true};
if constexpr (std::is_same_v<ExpandEntry, CPUExpandEntry>) {
GetSplit(&tree, mid_value, &candidates);
} else {
GetMultiSplitForTest(&tree, mid_value, &candidates);
}
auto left_nidx = tree.LeftChild(RegTree::kRoot);
partitioner.UpdatePosition<false, true>(&ctx, gmat, column_indices, candidates, &tree);
{
auto const& elem = partitioner[left_nidx];
ASSERT_LT(elem.Size(), n_samples);
ASSERT_GT(elem.Size(), 1);
auto const& expected_elem = expected_mid_partitioner[left_nidx];
ASSERT_EQ(elem.Size(), expected_elem.Size());
for (auto it = elem.begin(), eit = expected_elem.begin(); it != elem.end(); ++it, ++eit) {
ASSERT_EQ(*it, *eit);
}
}
{
auto right_nidx = tree.RightChild(RegTree::kRoot);
auto const& elem = partitioner[right_nidx];
auto const& expected_elem = expected_mid_partitioner[right_nidx];
ASSERT_EQ(elem.Size(), expected_elem.Size());
for (auto it = elem.begin(), eit = expected_elem.begin(); it != elem.end(); ++it, ++eit) {
ASSERT_EQ(*it, *eit);
}
}
}
}
}
template <typename ExpandEntry>
void TestColumnSplitPartitioner(bst_target_t n_targets) {
std::size_t n_samples = 1024, base_rowid = 0;
bst_feature_t n_features = 16;
auto Xy = RandomDataGenerator{n_samples, n_features, 0}.GenerateDMatrix(true);
std::vector<ExpandEntry> candidates{{0, 0}};
candidates.front().split.loss_chg = 0.4;
Context ctx;
ctx.InitAllowUnknown(Args{});
auto cuts = common::SketchOnDMatrix(&ctx, Xy.get(), 64);
float min_value, mid_value;
CommonRowPartitioner mid_partitioner{&ctx, n_samples, base_rowid, false};
for (auto const& page : Xy->GetBatches<SparsePage>()) {
GHistIndexMatrix gmat(page, {}, cuts, 64, true, 0.5, ctx.Threads());
bst_feature_t const split_ind = 0;
common::ColumnMatrix column_indices;
column_indices.InitFromSparse(page, gmat, 0.5, ctx.Threads());
min_value = gmat.cut.MinValues()[split_ind];
auto ptr = gmat.cut.Ptrs()[split_ind + 1];
mid_value = gmat.cut.Values().at(ptr / 2);
RegTree tree{n_targets, n_features};
if constexpr (std::is_same_v<ExpandEntry, CPUExpandEntry>) {
GetSplit(&tree, mid_value, &candidates);
} else {
GetMultiSplitForTest(&tree, mid_value, &candidates);
}
mid_partitioner.UpdatePosition<false, true>(&ctx, gmat, column_indices, candidates, &tree);
}
auto constexpr kWorkers = 4;
collective::TestDistributedGlobal(kWorkers, [&] {
VerifyColumnSplitPartitioner<ExpandEntry>(n_targets, n_samples, n_features, base_rowid, Xy,
min_value, mid_value, mid_partitioner);
});
}
} // anonymous namespace
TEST(QuantileHist, PartitionerColumnSplit) { TestColumnSplitPartitioner<CPUExpandEntry>(1); }
TEST(QuantileHist, MultiPartitionerColumnSplit) { TestColumnSplitPartitioner<MultiExpandEntry>(3); }
namespace {
class TestHistColumnSplit : public ::testing::TestWithParam<std::tuple<bst_target_t, bool, float>> {
public:
void Run() {
auto [n_targets, categorical, sparsity] = GetParam();
TestColumnSplit(n_targets, categorical, "grow_quantile_histmaker", sparsity);
}
};
} // anonymous namespace
TEST_P(TestHistColumnSplit, Basic) { this->Run(); }
INSTANTIATE_TEST_SUITE_P(ColumnSplit, TestHistColumnSplit, ::testing::ValuesIn([]() {
std::vector<std::tuple<bst_target_t, bool, float>> params;
for (auto categorical : {true, false}) {
for (auto sparsity : {0.0f, 0.6f}) {
for (bst_target_t n_targets : {1u, 3u}) {
params.emplace_back(n_targets, categorical, sparsity);
}
}
}
return params;
}()));
} // namespace xgboost::tree
|