File: test_tree_policy.cc

package info (click to toggle)
xgboost 3.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 13,796 kB
  • sloc: cpp: 67,502; python: 35,503; java: 4,676; ansic: 1,426; sh: 1,320; xml: 1,197; makefile: 204; javascript: 19
file content (169 lines) | stat: -rw-r--r-- 5,045 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
/*!
 * Copyright 2021 XGBoost contributors
 */
#include <gtest/gtest.h>
#include <xgboost/base.h>
#include <xgboost/tree_model.h>
#include "../helpers.h"

namespace xgboost {
class TestGrowPolicy : public ::testing::Test {
 protected:
  std::shared_ptr<DMatrix> Xy_;
  size_t n_samples_ = 4096, n_features_ = 13;
  float sparsity_ = 0.5;

 protected:
  void SetUp() override {
    Xy_ =
        RandomDataGenerator{n_samples_, n_features_, sparsity_}.GenerateDMatrix(
            true);
  }

  std::unique_ptr<Learner> TrainOneIter(Context const* ctx, std::string tree_method,
                                        std::string policy, int32_t max_leaves, int32_t max_depth) {
    std::unique_ptr<Learner> learner{Learner::Create({this->Xy_})};
    learner->SetParam("tree_method", tree_method);
    learner->SetParam("device", ctx->DeviceName());
    if (max_leaves >= 0) {
      learner->SetParam("max_leaves", std::to_string(max_leaves));
    }
    if (max_depth >= 0) {
      learner->SetParam("max_depth", std::to_string(max_depth));
    }
    learner->SetParam("grow_policy", policy);

    auto check_max_leave = [&]() {
      Json model{Object{}};
      learner->SaveModel(&model);
      auto j_tree = model["learner"]["gradient_booster"]["model"]["trees"][0];
      RegTree tree;
      tree.LoadModel(j_tree);
      CHECK_LE(tree.GetNumLeaves(), max_leaves);
    };

    auto check_max_depth = [&](int32_t sol) {
      Json model{Object{}};
      learner->SaveModel(&model);

      auto j_tree = model["learner"]["gradient_booster"]["model"]["trees"][0];
      RegTree tree;
      tree.LoadModel(j_tree);
      bst_node_t depth = 0;
      tree.WalkTree([&](bst_node_t nidx) {
        depth = std::max(tree.GetDepth(nidx), depth);
        return true;
      });
      if (sol > -1) {
        CHECK_EQ(depth, sol);
      } else {
        CHECK_EQ(depth, max_depth) << "tree method: " << tree_method << " policy: " << policy
                                   << " leaves:" << max_leaves << ", depth:" << max_depth;
      }
    };

    if (max_leaves == 0 && max_depth == 0) {
      // unconstrainted
      if (ctx->IsCPU()) {
        // GPU pre-allocates for all nodes.
        learner->UpdateOneIter(0, Xy_);
      }
    } else if (max_leaves > 0 && max_depth == 0) {
      learner->UpdateOneIter(0, Xy_);
      check_max_leave();
    } else if (max_leaves == 0 && max_depth > 0) {
      learner->UpdateOneIter(0, Xy_);
      check_max_depth(-1);
    } else if (max_leaves > 0 && max_depth > 0) {
      learner->UpdateOneIter(0, Xy_);
      check_max_leave();
      check_max_depth(2);
    } else if (max_leaves == -1 && max_depth == 0) {
      // default max_leaves is 0, so both of them are now 0
    } else {
      // default parameters
      learner->UpdateOneIter(0, Xy_);
    }
    return learner;
  }

  void TestCombination(Context const* ctx, std::string tree_method) {
    for (auto policy : {"depthwise", "lossguide"}) {
      // -1 means default
      for (auto leaves : {-1, 0, 3}) {
        for (auto depth : {-1, 0, 3}) {
          this->TrainOneIter(ctx, tree_method, policy, leaves, depth);
        }
      }
    }
  }

  void TestTreeGrowPolicy(Context const* ctx, std::string tree_method, std::string policy) {
    {
      /**
       *  max_leaves
       */
      auto learner = this->TrainOneIter(ctx, tree_method, policy, 16, -1);
      Json model{Object{}};
      learner->SaveModel(&model);

      auto j_tree = model["learner"]["gradient_booster"]["model"]["trees"][0];
      RegTree tree;
      tree.LoadModel(j_tree);
      ASSERT_EQ(tree.GetNumLeaves(), 16);
    }
    {
      /**
       *  max_depth
       */
      auto learner = this->TrainOneIter(ctx, tree_method, policy, -1, 3);
      Json model{Object{}};
      learner->SaveModel(&model);

      auto j_tree = model["learner"]["gradient_booster"]["model"]["trees"][0];
      RegTree tree;
      tree.LoadModel(j_tree);
      bst_node_t depth = 0;
      tree.WalkTree([&](bst_node_t nidx) {
        depth = std::max(tree.GetDepth(nidx), depth);
        return true;
      });
      ASSERT_EQ(depth, 3);
    }
  }
};

TEST_F(TestGrowPolicy, Approx) {
  Context ctx;
  this->TestTreeGrowPolicy(&ctx, "approx", "depthwise");
  this->TestTreeGrowPolicy(&ctx, "approx", "lossguide");

  this->TestCombination(&ctx, "approx");
}

TEST_F(TestGrowPolicy, Hist) {
  Context ctx;
  this->TestTreeGrowPolicy(&ctx, "hist", "depthwise");
  this->TestTreeGrowPolicy(&ctx, "hist", "lossguide");

  this->TestCombination(&ctx, "hist");
}

#if defined(XGBOOST_USE_CUDA)
TEST_F(TestGrowPolicy, GpuHist) {
  auto ctx = MakeCUDACtx(0);
  this->TestTreeGrowPolicy(&ctx, "hist", "depthwise");
  this->TestTreeGrowPolicy(&ctx, "hist", "lossguide");

  this->TestCombination(&ctx, "hist");
}

TEST_F(TestGrowPolicy, GpuApprox) {
  auto ctx = MakeCUDACtx(0);
  this->TestTreeGrowPolicy(&ctx, "approx", "depthwise");
  this->TestTreeGrowPolicy(&ctx, "approx", "lossguide");

  this->TestCombination(&ctx, "approx");
}
#endif  // defined(XGBOOST_USE_CUDA)
}  // namespace xgboost