File: test_tree_stat.cc

package info (click to toggle)
xgboost 3.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 13,796 kB
  • sloc: cpp: 67,502; python: 35,503; java: 4,676; ansic: 1,426; sh: 1,320; xml: 1,197; makefile: 204; javascript: 19
file content (270 lines) | stat: -rw-r--r-- 8,096 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
/**
 * Copyright 2020-2024, XGBoost Contributors
 */
#include <gtest/gtest.h>
#include <xgboost/context.h>       // for Context
#include <xgboost/task.h>          // for ObjInfo
#include <xgboost/tree_model.h>    // for RegTree
#include <xgboost/tree_updater.h>  // for TreeUpdater

#include <memory>  // for unique_ptr

#include "../../../src/tree/param.h"  // for TrainParam
#include "../helpers.h"

namespace xgboost {
/**
 * @brief Test the tree statistic (like sum Hessian) is correct.
 */
class UpdaterTreeStatTest : public ::testing::Test {
 protected:
  std::shared_ptr<DMatrix> p_dmat_;
  linalg::Matrix<GradientPair> gpairs_;
  size_t constexpr static kRows = 10;
  size_t constexpr static kCols = 10;

 protected:
  void SetUp() override {
    p_dmat_ = RandomDataGenerator(kRows, kCols, .5f).GenerateDMatrix(true);
    auto g = GenerateRandomGradients(kRows);
    gpairs_.Reshape(kRows, 1);
    gpairs_.Data()->Copy(g);
  }

  void RunTest(Context const* ctx, std::string updater) {
    tree::TrainParam param;
    ObjInfo task{ObjInfo::kRegression};
    param.Init(Args{});

    auto up = std::unique_ptr<TreeUpdater>{TreeUpdater::Create(updater, ctx, &task)};
    up->Configure(Args{});
    RegTree tree{1u, kCols};
    std::vector<HostDeviceVector<bst_node_t>> position(1);
    up->Update(&param, &gpairs_, p_dmat_.get(), position, {&tree});

    tree.WalkTree([&tree](bst_node_t nidx) {
      if (tree[nidx].IsLeaf()) {
        // 1.0 is the default `min_child_weight`.
        CHECK_GE(tree.Stat(nidx).sum_hess, 1.0);
      }
      return true;
    });
  }
};

#if defined(XGBOOST_USE_CUDA)
TEST_F(UpdaterTreeStatTest, GpuHist) {
  auto ctx = MakeCUDACtx(0);
  this->RunTest(&ctx, "grow_gpu_hist");
}

TEST_F(UpdaterTreeStatTest, GpuApprox) {
  auto ctx = MakeCUDACtx(0);
  this->RunTest(&ctx, "grow_gpu_approx");
}
#endif  // defined(XGBOOST_USE_CUDA)

TEST_F(UpdaterTreeStatTest, Hist) {
  Context ctx;
  this->RunTest(&ctx, "grow_quantile_histmaker");
}

TEST_F(UpdaterTreeStatTest, Exact) {
  Context ctx;
  this->RunTest(&ctx, "grow_colmaker");
}

TEST_F(UpdaterTreeStatTest, Approx) {
  Context ctx;
  this->RunTest(&ctx, "grow_histmaker");
}

/**
 * @brief Test changing learning rate doesn't change internal splits.
 */
class TestSplitWithEta : public ::testing::Test {
 protected:
  void Run(Context const* ctx, bst_target_t n_targets, std::string name) {
    auto Xy = RandomDataGenerator{512, 64, 0.2}.Targets(n_targets).GenerateDMatrix(true);

    auto gen_tree = [&](float eta) {
      auto tree =
          std::make_unique<RegTree>(n_targets, static_cast<bst_feature_t>(Xy->Info().num_col_));
      std::vector<RegTree*> trees{tree.get()};
      ObjInfo task{ObjInfo::kRegression};
      std::unique_ptr<TreeUpdater> updater{TreeUpdater::Create(name, ctx, &task)};
      updater->Configure({});

      auto grad = GenerateRandomGradients(ctx, Xy->Info().num_row_, n_targets);
      CHECK_EQ(grad.Shape(1), n_targets);
      tree::TrainParam param;
      param.Init(Args{{"learning_rate", std::to_string(eta)}});
      HostDeviceVector<bst_node_t> position;

      updater->Update(&param, &grad, Xy.get(), common::Span{&position, 1}, trees);
      CHECK_EQ(tree->NumTargets(), n_targets);
      if (n_targets > 1) {
        CHECK(tree->IsMultiTarget());
      }
      return tree;
    };

    auto eta_ratio = 8.0f;
    auto p_tree0 = gen_tree(0.1f);
    auto p_tree1 = gen_tree(0.1f * eta_ratio);
    // Just to make sure we are not testing a stump.
    CHECK_GE(p_tree0->NumExtraNodes(), 32);

    bst_node_t n_nodes{0};
    p_tree0->WalkTree([&](bst_node_t nidx) {
      if (p_tree0->IsLeaf(nidx)) {
        CHECK(p_tree1->IsLeaf(nidx));
        if (p_tree0->IsMultiTarget()) {
          CHECK(p_tree1->IsMultiTarget());
          auto leaf_0 = p_tree0->GetMultiTargetTree()->LeafValue(nidx);
          auto leaf_1 = p_tree1->GetMultiTargetTree()->LeafValue(nidx);
          CHECK_EQ(leaf_0.Size(), leaf_1.Size());
          for (std::size_t i = 0; i < leaf_0.Size(); ++i) {
            CHECK_EQ(leaf_0(i) * eta_ratio, leaf_1(i));
          }
          CHECK(std::isnan(p_tree0->SplitCond(nidx)));
          CHECK(std::isnan(p_tree1->SplitCond(nidx)));
        } else {
          // NON-mt tree reuses split cond for leaf value.
          auto leaf_0 = p_tree0->SplitCond(nidx);
          auto leaf_1 = p_tree1->SplitCond(nidx);
          CHECK_EQ(leaf_0 * eta_ratio, leaf_1);
        }
      } else {
        CHECK(!p_tree1->IsLeaf(nidx));
        CHECK_EQ(p_tree0->SplitCond(nidx), p_tree1->SplitCond(nidx));
      }
      n_nodes++;
      return true;
    });
    ASSERT_EQ(n_nodes, p_tree0->NumExtraNodes() + 1);
  }
};

TEST_F(TestSplitWithEta, HistMulti) {
  Context ctx;
  bst_target_t n_targets{3};
  this->Run(&ctx, n_targets, "grow_quantile_histmaker");
}

TEST_F(TestSplitWithEta, Hist) {
  Context ctx;
  bst_target_t n_targets{1};
  this->Run(&ctx, n_targets, "grow_quantile_histmaker");
}

TEST_F(TestSplitWithEta, Approx) {
  Context ctx;
  bst_target_t n_targets{1};
  this->Run(&ctx, n_targets, "grow_histmaker");
}

TEST_F(TestSplitWithEta, Exact) {
  Context ctx;
  bst_target_t n_targets{1};
  this->Run(&ctx, n_targets, "grow_colmaker");
}

#if defined(XGBOOST_USE_CUDA)
TEST_F(TestSplitWithEta, GpuHist) {
  auto ctx = MakeCUDACtx(0);
  bst_target_t n_targets{1};
  this->Run(&ctx, n_targets, "grow_gpu_hist");
}

TEST_F(TestSplitWithEta, GpuApprox) {
  auto ctx = MakeCUDACtx(0);
  bst_target_t n_targets{1};
  this->Run(&ctx, n_targets, "grow_gpu_approx");
}
#endif  // defined(XGBOOST_USE_CUDA)

class TestMinSplitLoss : public ::testing::Test {
  std::shared_ptr<DMatrix> dmat_;
  linalg::Matrix<GradientPair> gpair_;

  void SetUp() override {
    constexpr size_t kRows = 32;
    constexpr size_t kCols = 16;
    constexpr float kSparsity = 0.6;
    dmat_ = RandomDataGenerator(kRows, kCols, kSparsity).Seed(3).GenerateDMatrix();
    gpair_.Reshape(kRows, 1);
    gpair_.Data()->Copy(GenerateRandomGradients(kRows));
  }

  std::int32_t Update(Context const* ctx, std::string updater, float gamma) {
    Args args{{"max_depth", "1"},
              {"max_leaves", "0"},

              // Disable all other parameters.
              {"colsample_bynode", "1"},
              {"colsample_bylevel", "1"},
              {"colsample_bytree", "1"},
              {"min_child_weight", "0.01"},
              {"reg_alpha", "0"},
              {"reg_lambda", "0"},
              {"max_delta_step", "0"},

              // test gamma
              {"gamma", std::to_string(gamma)}};
    tree::TrainParam param;
    param.UpdateAllowUnknown(args);
    ObjInfo task{ObjInfo::kRegression};

    auto up = std::unique_ptr<TreeUpdater>{TreeUpdater::Create(updater, ctx, &task)};
    up->Configure({});

    RegTree tree;
    std::vector<HostDeviceVector<bst_node_t>> position(1);
    up->Update(&param, &gpair_, dmat_.get(), position, {&tree});

    auto n_nodes = tree.NumExtraNodes();
    return n_nodes;
  }

 public:
  void RunTest(Context const* ctx, std::string updater) {
    {
      int32_t n_nodes = Update(ctx, updater, 0.01);
      // This is not strictly verified, meaning the numeber `2` is whatever GPU_Hist retured
      // when writing this test, and only used for testing larger gamma (below) does prevent
      // building tree.
      ASSERT_EQ(n_nodes, 2);
    }
    {
      int32_t n_nodes = Update(ctx, updater, 100.0);
      // No new nodes with gamma == 100.
      ASSERT_EQ(n_nodes, static_cast<decltype(n_nodes)>(0));
    }
  }
};

/* Exact tree method requires a pruner as an additional updater, so not tested here. */

TEST_F(TestMinSplitLoss, Approx) {
  Context ctx;
  this->RunTest(&ctx, "grow_histmaker");
}

TEST_F(TestMinSplitLoss, Hist) {
  Context ctx;
  this->RunTest(&ctx, "grow_quantile_histmaker");
}

#if defined(XGBOOST_USE_CUDA)
TEST_F(TestMinSplitLoss, GpuHist) {
  auto ctx = MakeCUDACtx(0);
  this->RunTest(&ctx, "grow_gpu_hist");
}

TEST_F(TestMinSplitLoss, GpuApprox) {
  auto ctx = MakeCUDACtx(0);
  this->RunTest(&ctx, "grow_gpu_approx");
}
#endif  // defined(XGBOOST_USE_CUDA)
}  // namespace xgboost