File: test_from_cudf.py

package info (click to toggle)
xgboost 3.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 13,796 kB
  • sloc: cpp: 67,502; python: 35,503; java: 4,676; ansic: 1,426; sh: 1,320; xml: 1,197; makefile: 204; javascript: 19
file content (401 lines) | stat: -rw-r--r-- 12,919 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
import json

import numpy as np
import pytest

import xgboost as xgb
from xgboost import testing as tm
from xgboost.testing.data import run_base_margin_info

cudf = pytest.importorskip("cudf")


def dmatrix_from_cudf(input_type, DMatrixT, missing=np.nan):
    """Test constructing DMatrix from cudf"""
    import pandas as pd

    kRows = 80
    kCols = 3

    na = np.random.randn(kRows, kCols)
    na[:, 0:2] = na[:, 0:2].astype(input_type)

    na[5, 0] = missing
    na[3, 1] = missing

    pa = pd.DataFrame({"0": na[:, 0], "1": na[:, 1], "2": na[:, 2].astype(np.int32)})

    np_label = np.random.randn(kRows).astype(input_type)
    pa_label = pd.DataFrame(np_label)

    cd = cudf.from_pandas(pa)
    cd_label = cudf.from_pandas(pa_label).iloc[:, 0]

    dtrain = DMatrixT(cd, missing=missing, label=cd_label)
    assert dtrain.num_col() == kCols
    assert dtrain.num_row() == kRows


def _test_from_cudf(DMatrixT):
    """Test constructing DMatrix from cudf"""
    dmatrix_from_cudf(np.float32, DMatrixT, np.nan)
    dmatrix_from_cudf(np.float64, DMatrixT, np.nan)

    dmatrix_from_cudf(np.int8, DMatrixT, 2)
    dmatrix_from_cudf(np.int32, DMatrixT, -2)
    dmatrix_from_cudf(np.int64, DMatrixT, -3)

    cd = cudf.DataFrame({"x": [1, 2, 3], "y": [0.1, 0.2, 0.3]})
    dtrain = DMatrixT(cd)

    assert dtrain.feature_names == ["x", "y"]
    assert dtrain.feature_types == ["int", "float"]

    series = cudf.DataFrame({"x": [1, 2, 3]}).iloc[:, 0]
    assert isinstance(series, cudf.Series)
    dtrain = DMatrixT(series)

    assert dtrain.feature_names == ["x"]
    assert dtrain.feature_types == ["int"]

    with pytest.raises(ValueError, match=r".*multi.*"):
        dtrain = DMatrixT(cd, label=cd)
        xgb.train(
            {"tree_method": "hist", "device": "cuda", "objective": "multi:softprob"},
            dtrain,
        )

    # Test when number of elements is less than 8
    X = cudf.DataFrame({"x": cudf.Series([0, 1, 2, np.nan, 4], dtype=np.int32)})
    dtrain = DMatrixT(X)
    assert dtrain.num_col() == 1
    assert dtrain.num_row() == 5


def _test_cudf_training(DMatrixT):
    import pandas as pd
    from cudf import DataFrame as df

    np.random.seed(1)
    X = pd.DataFrame(np.random.randn(50, 10))
    y = pd.DataFrame(np.random.randn(50))
    weights = np.random.random(50) + 1.0
    cudf_weights = df.from_pandas(pd.DataFrame(weights))
    base_margin = np.random.random(50)
    cudf_base_margin = df.from_pandas(pd.DataFrame(base_margin))

    evals_result_cudf = {}
    dtrain_cudf = DMatrixT(
        df.from_pandas(X),
        df.from_pandas(y),
        weight=cudf_weights,
        base_margin=cudf_base_margin,
    )
    params = {"device": "cuda", "tree_method": "hist"}
    xgb.train(
        params,
        dtrain_cudf,
        evals=[(dtrain_cudf, "train")],
        evals_result=evals_result_cudf,
    )
    evals_result_np = {}
    dtrain_np = xgb.DMatrix(X, y, weight=weights, base_margin=base_margin)
    xgb.train(
        params, dtrain_np, evals=[(dtrain_np, "train")], evals_result=evals_result_np
    )
    assert np.array_equal(
        evals_result_cudf["train"]["rmse"], evals_result_np["train"]["rmse"]
    )


def _test_cudf_metainfo(DMatrixT):
    import pandas as pd
    from cudf import DataFrame as df

    n = 100
    X = np.random.random((n, 2))
    dmat_cudf = DMatrixT(df.from_pandas(pd.DataFrame(X)))
    dmat = xgb.DMatrix(X)
    floats = np.random.random(n)
    uints = np.array([4, 2, 8]).astype("uint32")
    cudf_floats = df.from_pandas(pd.DataFrame(floats))
    cudf_uints = df.from_pandas(pd.DataFrame(uints))
    dmat.set_float_info("weight", floats)
    dmat.set_float_info("label", floats)
    dmat.set_float_info("base_margin", floats)
    dmat.set_uint_info("group", uints)
    dmat_cudf.set_info(weight=cudf_floats)
    dmat_cudf.set_info(label=cudf_floats)
    dmat_cudf.set_info(base_margin=cudf_floats)
    dmat_cudf.set_info(group=cudf_uints)

    # Test setting info with cudf DataFrame
    assert np.array_equal(
        dmat.get_float_info("weight"), dmat_cudf.get_float_info("weight")
    )
    assert np.array_equal(
        dmat.get_float_info("label"), dmat_cudf.get_float_info("label")
    )
    assert np.array_equal(
        dmat.get_float_info("base_margin"), dmat_cudf.get_float_info("base_margin")
    )
    assert np.array_equal(
        dmat.get_uint_info("group_ptr"), dmat_cudf.get_uint_info("group_ptr")
    )

    # Test setting info with cudf Series
    dmat_cudf.set_info(weight=cudf_floats[cudf_floats.columns[0]])
    dmat_cudf.set_info(label=cudf_floats[cudf_floats.columns[0]])
    dmat_cudf.set_info(base_margin=cudf_floats[cudf_floats.columns[0]])
    dmat_cudf.set_info(group=cudf_uints[cudf_uints.columns[0]])
    assert np.array_equal(
        dmat.get_float_info("weight"), dmat_cudf.get_float_info("weight")
    )
    assert np.array_equal(
        dmat.get_float_info("label"), dmat_cudf.get_float_info("label")
    )
    assert np.array_equal(
        dmat.get_float_info("base_margin"), dmat_cudf.get_float_info("base_margin")
    )
    assert np.array_equal(
        dmat.get_uint_info("group_ptr"), dmat_cudf.get_uint_info("group_ptr")
    )

    run_base_margin_info(df, DMatrixT, "cuda")


class TestFromColumnar:
    """Tests for constructing DMatrix from data structure conforming Apache
    Arrow specification."""

    @pytest.mark.skipif(**tm.no_cudf())
    def test_simple_dmatrix_from_cudf(self):
        _test_from_cudf(xgb.DMatrix)

    @pytest.mark.skipif(**tm.no_cudf())
    def test_device_dmatrix_from_cudf(self):
        _test_from_cudf(xgb.QuantileDMatrix)

    @pytest.mark.skipif(**tm.no_cudf())
    def test_cudf_training_simple_dmatrix(self):
        _test_cudf_training(xgb.DMatrix)

    @pytest.mark.skipif(**tm.no_cudf())
    def test_cudf_training_device_dmatrix(self):
        _test_cudf_training(xgb.QuantileDMatrix)

    @pytest.mark.skipif(**tm.no_cudf())
    def test_cudf_metainfo_simple_dmatrix(self):
        _test_cudf_metainfo(xgb.DMatrix)

    @pytest.mark.skipif(**tm.no_cudf())
    def test_cudf_metainfo_device_dmatrix(self):
        _test_cudf_metainfo(xgb.QuantileDMatrix)

    @pytest.mark.skipif(**tm.no_cudf())
    def test_cudf_categorical(self) -> None:
        n_features = 30
        _X, _y = tm.make_categorical(100, n_features, 17, onehot=False)
        X = cudf.from_pandas(_X)
        y = cudf.from_pandas(_y)

        Xy = xgb.DMatrix(X, y, enable_categorical=True)
        assert Xy.feature_types is not None
        assert len(Xy.feature_types) == X.shape[1]
        assert all(t == "c" for t in Xy.feature_types)

        Xy = xgb.QuantileDMatrix(X, y, enable_categorical=True)
        assert Xy.feature_types is not None
        assert len(Xy.feature_types) == X.shape[1]
        assert all(t == "c" for t in Xy.feature_types)

        # mixed dtypes
        X["0"] = X["0"].astype(np.int64)
        X["2"] = X["2"].astype(np.int64)
        df, cat_codes, _, _ = xgb.data._transform_cudf_df(
            X, None, None, enable_categorical=True
        )
        assert X.shape[1] == n_features
        assert len(cat_codes) == X.shape[1]
        assert not cat_codes[0]
        assert not cat_codes[2]

        interfaces_str = xgb.data._cudf_array_interfaces(df, cat_codes)
        interfaces = json.loads(interfaces_str)
        assert len(interfaces) == X.shape[1]

        # test missing value
        X = cudf.DataFrame({"f0": ["a", "b", np.nan]})
        X["f0"] = X["f0"].astype("category")
        df, cat_codes, _, _ = xgb.data._transform_cudf_df(
            X, None, None, enable_categorical=True
        )
        for col in cat_codes:
            assert col.has_nulls

        y = [0, 1, 2]
        with pytest.raises(ValueError):
            xgb.DMatrix(X, y)
        Xy = xgb.DMatrix(X, y, enable_categorical=True)
        assert Xy.num_row() == 3
        assert Xy.num_col() == 1

        with pytest.raises(ValueError, match="enable_categorical"):
            xgb.QuantileDMatrix(X, y)

        Xy = xgb.QuantileDMatrix(X, y, enable_categorical=True)
        assert Xy.num_row() == 3
        assert Xy.num_col() == 1

        X = X["f0"]
        with pytest.raises(ValueError):
            xgb.DMatrix(X, y)

        Xy = xgb.DMatrix(X, y, enable_categorical=True)
        assert Xy.num_row() == 3
        assert Xy.num_col() == 1


@pytest.mark.skipif(**tm.no_cudf())
@pytest.mark.skipif(**tm.no_cupy())
@pytest.mark.skipif(**tm.no_sklearn())
@pytest.mark.skipif(**tm.no_pandas())
def test_cudf_training_with_sklearn():
    import pandas as pd
    from cudf import DataFrame as df
    from cudf import Series as ss

    np.random.seed(1)
    X = pd.DataFrame(np.random.randn(50, 10))
    y = pd.DataFrame((np.random.randn(50) > 0).astype(np.int8))
    weights = np.random.random(50) + 1.0
    cudf_weights = df.from_pandas(pd.DataFrame(weights))
    base_margin = np.random.random(50)
    cudf_base_margin = df.from_pandas(pd.DataFrame(base_margin))

    X_cudf = df.from_pandas(X)
    y_cudf = df.from_pandas(y)
    y_cudf_series = ss(data=y.iloc[:, 0])

    for y_obj in [y_cudf, y_cudf_series]:
        clf = xgb.XGBClassifier(tree_method="hist", device="cuda:0")
        clf.fit(
            X_cudf,
            y_obj,
            sample_weight=cudf_weights,
            base_margin=cudf_base_margin,
            eval_set=[(X_cudf, y_obj)],
        )
        pred = clf.predict(X_cudf)
        assert np.array_equal(np.unique(pred), np.array([0, 1]))


class IterForDMatrixTest(xgb.core.DataIter):
    """A data iterator for XGBoost DMatrix.

    `reset` and `next` are required for any data iterator, other functions here
    are utilites for demonstration's purpose.

    """

    ROWS_PER_BATCH = 100  # data is splited by rows
    BATCHES = 16

    def __init__(self, categorical):
        """Generate some random data for demostration.

        Actual data can be anything that is currently supported by XGBoost.
        """
        self.rows = self.ROWS_PER_BATCH

        if categorical:
            self._data = []
            self._labels = []
            for i in range(self.BATCHES):
                X, y = tm.make_categorical(self.ROWS_PER_BATCH, 4, 13, onehot=False)
                self._data.append(cudf.from_pandas(X))
                self._labels.append(y)
        else:
            rng = np.random.RandomState(1994)
            self._data = [
                cudf.DataFrame(
                    {
                        "a": rng.randn(self.ROWS_PER_BATCH),
                        "b": rng.randn(self.ROWS_PER_BATCH),
                    }
                )
            ] * self.BATCHES
            self._labels = [rng.randn(self.rows)] * self.BATCHES

        self.it = 0  # set iterator to 0
        super().__init__(cache_prefix=None)

    def as_array(self):
        return cudf.concat(self._data)

    def as_array_labels(self):
        return np.concatenate(self._labels)

    def data(self):
        """Utility function for obtaining current batch of data."""
        return self._data[self.it]

    def labels(self):
        """Utility function for obtaining current batch of label."""
        return self._labels[self.it]

    def reset(self):
        """Reset the iterator"""
        self.it = 0

    def next(self, input_data):
        """Yield next batch of data"""
        if self.it == len(self._data):
            # Return 0 when there's no more batch.
            return 0
        input_data(data=self.data(), label=self.labels())
        self.it += 1
        return 1


@pytest.mark.skipif(**tm.no_cudf())
@pytest.mark.parametrize("enable_categorical", [True, False])
def test_from_cudf_iter(enable_categorical):
    rounds = 100
    it = IterForDMatrixTest(enable_categorical)
    params = {"tree_method": "hist", "device": "cuda"}

    # Use iterator
    m_it = xgb.QuantileDMatrix(it, enable_categorical=enable_categorical)
    reg_with_it = xgb.train(params, m_it, num_boost_round=rounds)

    X = it.as_array()
    y = it.as_array_labels()

    m = xgb.DMatrix(X, y, enable_categorical=enable_categorical)

    assert m_it.num_col() == m.num_col()
    assert m_it.num_row() == m.num_row()

    reg = xgb.train(params, m, num_boost_round=rounds)

    predict = reg.predict(m)
    predict_with_it = reg_with_it.predict(m_it)
    np.testing.assert_allclose(predict_with_it, predict)


def test_invalid_meta() -> None:
    df = cudf.DataFrame({"f0": [0, 1, 2], "f1": [2, 3, 4], "y": [None, 1, 2]})
    y = df["y"]
    X = df.drop(["y"], axis=1)
    with pytest.raises(ValueError, match="Missing value"):
        xgb.DMatrix(X, y)
    with pytest.raises(ValueError, match="Missing value"):
        xgb.QuantileDMatrix(X, y)
    y = X.copy()
    y.iloc[0, 0] = None
    # check by the cuDF->cupy converter.
    with pytest.raises(ValueError, match="no nulls"):
        xgb.DMatrix(X, y)
    with pytest.raises(ValueError, match="no nulls"):
        xgb.QuantileDMatrix(X, y)