1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
|
import json
import numpy as np
import pytest
import xgboost as xgb
from xgboost import testing as tm
from xgboost.testing.data import run_base_margin_info
cp = pytest.importorskip("cupy")
def test_array_interface() -> None:
arr = cp.array([[1, 2, 3, 4], [1, 2, 3, 4]])
i_arr = arr.__cuda_array_interface__
i_arr = json.loads(json.dumps(i_arr))
ret = xgb.core.from_array_interface(i_arr)
np.testing.assert_equal(cp.asnumpy(arr), cp.asnumpy(ret))
def dmatrix_from_cupy(input_type, DMatrixT, missing=np.nan):
"""Test constructing DMatrix from cupy"""
kRows = 80
kCols = 3
np_X = np.random.randn(kRows, kCols).astype(dtype=input_type)
X = cp.array(np_X)
X[5, 0] = missing
X[3, 1] = missing
y = cp.random.randn(kRows).astype(dtype=input_type)
dtrain = DMatrixT(X, missing=missing, label=y)
assert dtrain.num_col() == kCols
assert dtrain.num_row() == kRows
if DMatrixT is xgb.QuantileDMatrix:
# Slice is not supported by QuantileDMatrix
with pytest.raises(xgb.core.XGBoostError):
dtrain.slice(rindex=[0, 1, 2])
dtrain.slice(rindex=[0, 1, 2])
else:
dtrain.slice(rindex=[0, 1, 2])
dtrain.slice(rindex=[0, 1, 2])
return dtrain
def _test_from_cupy(DMatrixT):
"""Test constructing DMatrix from cupy"""
dmatrix_from_cupy(np.float16, DMatrixT, np.nan)
dmatrix_from_cupy(np.float32, DMatrixT, np.nan)
dmatrix_from_cupy(np.float64, DMatrixT, np.nan)
dmatrix_from_cupy(np.uint8, DMatrixT, 2)
dmatrix_from_cupy(np.uint32, DMatrixT, 3)
dmatrix_from_cupy(np.uint64, DMatrixT, 4)
dmatrix_from_cupy(np.int8, DMatrixT, 2)
dmatrix_from_cupy(np.int32, DMatrixT, -2)
dmatrix_from_cupy(np.int64, DMatrixT, -3)
with pytest.raises(ValueError):
X = cp.random.randn(2, 2, dtype="float32")
y = cp.random.randn(2, 2, 3, dtype="float32")
DMatrixT(X, label=y)
def _test_cupy_training(DMatrixT):
np.random.seed(1)
cp.random.seed(np.uint64(1))
X = cp.random.randn(50, 10, dtype="float32")
y = cp.random.randn(50, dtype="float32")
weights = np.random.random(50) + 1
cupy_weights = cp.array(weights)
base_margin = np.random.random(50)
cupy_base_margin = cp.array(base_margin)
evals_result_cupy = {}
dtrain_cp = DMatrixT(X, y, weight=cupy_weights, base_margin=cupy_base_margin)
params = {"tree_method": "hist", "device": "cuda:0"}
xgb.train(
params, dtrain_cp, evals=[(dtrain_cp, "train")], evals_result=evals_result_cupy
)
evals_result_np = {}
dtrain_np = xgb.DMatrix(
cp.asnumpy(X), cp.asnumpy(y), weight=weights, base_margin=base_margin
)
xgb.train(
params, dtrain_np, evals=[(dtrain_np, "train")], evals_result=evals_result_np
)
assert np.array_equal(
evals_result_cupy["train"]["rmse"], evals_result_np["train"]["rmse"]
)
def _test_cupy_metainfo(DMatrixT):
n = 100
X = np.random.random((n, 2))
dmat_cupy = DMatrixT(cp.array(X))
dmat = xgb.DMatrix(X)
floats = np.random.random(n)
uints = np.array([4, 2, 8]).astype("uint32")
cupy_floats = cp.array(floats)
cupy_uints = cp.array(uints)
dmat.set_float_info("weight", floats)
dmat.set_float_info("label", floats)
dmat.set_float_info("base_margin", floats)
dmat.set_uint_info("group", uints)
dmat_cupy.set_info(weight=cupy_floats)
dmat_cupy.set_info(label=cupy_floats)
dmat_cupy.set_info(base_margin=cupy_floats)
dmat_cupy.set_info(group=cupy_uints)
# Test setting info with cupy
assert np.array_equal(
dmat.get_float_info("weight"), dmat_cupy.get_float_info("weight")
)
assert np.array_equal(
dmat.get_float_info("label"), dmat_cupy.get_float_info("label")
)
assert np.array_equal(
dmat.get_float_info("base_margin"), dmat_cupy.get_float_info("base_margin")
)
assert np.array_equal(
dmat.get_uint_info("group_ptr"), dmat_cupy.get_uint_info("group_ptr")
)
run_base_margin_info(cp.asarray, DMatrixT, "cuda")
@pytest.mark.skipif(**tm.no_cupy())
@pytest.mark.skipif(**tm.no_sklearn())
def test_cupy_training_with_sklearn():
np.random.seed(1)
cp.random.seed(np.uint64(1))
X = cp.random.randn(50, 10, dtype="float32")
y = (cp.random.randn(50, dtype="float32") > 0).astype("int8")
weights = np.random.random(50) + 1
cupy_weights = cp.array(weights)
base_margin = np.random.random(50)
cupy_base_margin = cp.array(base_margin)
clf = xgb.XGBClassifier(tree_method="hist", device="cuda:0")
clf.fit(
X,
y,
sample_weight=cupy_weights,
base_margin=cupy_base_margin,
eval_set=[(X, y)],
)
pred = clf.predict(X)
assert np.array_equal(np.unique(pred), np.array([0, 1]))
class TestFromCupy:
"""Tests for constructing DMatrix from data structure conforming Apache
Arrow specification."""
@pytest.mark.skipif(**tm.no_cupy())
def test_simple_dmat_from_cupy(self):
_test_from_cupy(xgb.DMatrix)
@pytest.mark.skipif(**tm.no_cupy())
def test_device_dmat_from_cupy(self):
_test_from_cupy(xgb.QuantileDMatrix)
@pytest.mark.skipif(**tm.no_cupy())
def test_cupy_training_device_dmat(self):
_test_cupy_training(xgb.QuantileDMatrix)
@pytest.mark.skipif(**tm.no_cupy())
def test_cupy_training_simple_dmat(self):
_test_cupy_training(xgb.DMatrix)
@pytest.mark.skipif(**tm.no_cupy())
def test_cupy_metainfo_simple_dmat(self):
_test_cupy_metainfo(xgb.DMatrix)
@pytest.mark.skipif(**tm.no_cupy())
def test_cupy_metainfo_device_dmat(self):
_test_cupy_metainfo(xgb.QuantileDMatrix)
@pytest.mark.skipif(**tm.no_cupy())
def test_dlpack_simple_dmat(self):
n = 100
X = cp.random.random((n, 2))
xgb.DMatrix(X.toDlpack())
@pytest.mark.skipif(**tm.no_cupy())
def test_cupy_categorical(self):
n_features = 10
X, y = tm.make_categorical(10, n_features, n_categories=4, onehot=False)
X = cp.asarray(X.values.astype(cp.float32))
y = cp.array(y)
feature_types = ["c"] * n_features
assert isinstance(X, cp.ndarray)
Xy = xgb.DMatrix(X, y, feature_types=feature_types)
np.testing.assert_equal(np.array(Xy.feature_types), np.array(feature_types))
@pytest.mark.skipif(**tm.no_cupy())
def test_dlpack_device_dmat(self):
n = 100
X = cp.random.random((n, 2))
m = xgb.QuantileDMatrix(X.toDlpack())
with pytest.raises(
xgb.core.XGBoostError, match="Slicing DMatrix is not supported"
):
m.slice(rindex=[0, 1, 2])
@pytest.mark.skipif(**tm.no_cupy())
def test_qid(self):
rng = cp.random.RandomState(np.uint64(1994))
rows = 100
cols = 10
X, y = rng.randn(rows, cols), rng.randn(rows)
qid = rng.randint(low=0, high=10, size=rows, dtype=np.uint32)
qid = cp.sort(qid)
Xy = xgb.DMatrix(X, y)
Xy.set_info(qid=qid)
group_ptr = Xy.get_uint_info("group_ptr")
assert group_ptr[0] == 0
assert group_ptr[-1] == rows
@pytest.mark.skipif(**tm.no_cupy())
@pytest.mark.mgpu
def test_specified_device(self):
cp.cuda.runtime.setDevice(0)
dtrain = dmatrix_from_cupy(np.float32, xgb.QuantileDMatrix, np.nan)
with pytest.raises(xgb.core.XGBoostError, match="Invalid device ordinal"):
xgb.train(
{"tree_method": "hist", "device": "cuda:1"}, dtrain, num_boost_round=10
)
|