File: test_from_cupy.py

package info (click to toggle)
xgboost 3.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 13,796 kB
  • sloc: cpp: 67,502; python: 35,503; java: 4,676; ansic: 1,426; sh: 1,320; xml: 1,197; makefile: 204; javascript: 19
file content (234 lines) | stat: -rw-r--r-- 7,628 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import json

import numpy as np
import pytest

import xgboost as xgb
from xgboost import testing as tm
from xgboost.testing.data import run_base_margin_info

cp = pytest.importorskip("cupy")


def test_array_interface() -> None:
    arr = cp.array([[1, 2, 3, 4], [1, 2, 3, 4]])
    i_arr = arr.__cuda_array_interface__
    i_arr = json.loads(json.dumps(i_arr))
    ret = xgb.core.from_array_interface(i_arr)
    np.testing.assert_equal(cp.asnumpy(arr), cp.asnumpy(ret))


def dmatrix_from_cupy(input_type, DMatrixT, missing=np.nan):
    """Test constructing DMatrix from cupy"""
    kRows = 80
    kCols = 3

    np_X = np.random.randn(kRows, kCols).astype(dtype=input_type)
    X = cp.array(np_X)
    X[5, 0] = missing
    X[3, 1] = missing
    y = cp.random.randn(kRows).astype(dtype=input_type)
    dtrain = DMatrixT(X, missing=missing, label=y)
    assert dtrain.num_col() == kCols
    assert dtrain.num_row() == kRows

    if DMatrixT is xgb.QuantileDMatrix:
        # Slice is not supported by QuantileDMatrix
        with pytest.raises(xgb.core.XGBoostError):
            dtrain.slice(rindex=[0, 1, 2])
            dtrain.slice(rindex=[0, 1, 2])
    else:
        dtrain.slice(rindex=[0, 1, 2])
        dtrain.slice(rindex=[0, 1, 2])

    return dtrain


def _test_from_cupy(DMatrixT):
    """Test constructing DMatrix from cupy"""
    dmatrix_from_cupy(np.float16, DMatrixT, np.nan)
    dmatrix_from_cupy(np.float32, DMatrixT, np.nan)
    dmatrix_from_cupy(np.float64, DMatrixT, np.nan)

    dmatrix_from_cupy(np.uint8, DMatrixT, 2)
    dmatrix_from_cupy(np.uint32, DMatrixT, 3)
    dmatrix_from_cupy(np.uint64, DMatrixT, 4)

    dmatrix_from_cupy(np.int8, DMatrixT, 2)
    dmatrix_from_cupy(np.int32, DMatrixT, -2)
    dmatrix_from_cupy(np.int64, DMatrixT, -3)

    with pytest.raises(ValueError):
        X = cp.random.randn(2, 2, dtype="float32")
        y = cp.random.randn(2, 2, 3, dtype="float32")
        DMatrixT(X, label=y)


def _test_cupy_training(DMatrixT):
    np.random.seed(1)
    cp.random.seed(np.uint64(1))
    X = cp.random.randn(50, 10, dtype="float32")
    y = cp.random.randn(50, dtype="float32")
    weights = np.random.random(50) + 1
    cupy_weights = cp.array(weights)
    base_margin = np.random.random(50)
    cupy_base_margin = cp.array(base_margin)

    evals_result_cupy = {}
    dtrain_cp = DMatrixT(X, y, weight=cupy_weights, base_margin=cupy_base_margin)
    params = {"tree_method": "hist", "device": "cuda:0"}
    xgb.train(
        params, dtrain_cp, evals=[(dtrain_cp, "train")], evals_result=evals_result_cupy
    )
    evals_result_np = {}
    dtrain_np = xgb.DMatrix(
        cp.asnumpy(X), cp.asnumpy(y), weight=weights, base_margin=base_margin
    )
    xgb.train(
        params, dtrain_np, evals=[(dtrain_np, "train")], evals_result=evals_result_np
    )
    assert np.array_equal(
        evals_result_cupy["train"]["rmse"], evals_result_np["train"]["rmse"]
    )


def _test_cupy_metainfo(DMatrixT):
    n = 100
    X = np.random.random((n, 2))
    dmat_cupy = DMatrixT(cp.array(X))
    dmat = xgb.DMatrix(X)
    floats = np.random.random(n)
    uints = np.array([4, 2, 8]).astype("uint32")
    cupy_floats = cp.array(floats)
    cupy_uints = cp.array(uints)
    dmat.set_float_info("weight", floats)
    dmat.set_float_info("label", floats)
    dmat.set_float_info("base_margin", floats)
    dmat.set_uint_info("group", uints)
    dmat_cupy.set_info(weight=cupy_floats)
    dmat_cupy.set_info(label=cupy_floats)
    dmat_cupy.set_info(base_margin=cupy_floats)
    dmat_cupy.set_info(group=cupy_uints)

    # Test setting info with cupy
    assert np.array_equal(
        dmat.get_float_info("weight"), dmat_cupy.get_float_info("weight")
    )
    assert np.array_equal(
        dmat.get_float_info("label"), dmat_cupy.get_float_info("label")
    )
    assert np.array_equal(
        dmat.get_float_info("base_margin"), dmat_cupy.get_float_info("base_margin")
    )
    assert np.array_equal(
        dmat.get_uint_info("group_ptr"), dmat_cupy.get_uint_info("group_ptr")
    )

    run_base_margin_info(cp.asarray, DMatrixT, "cuda")


@pytest.mark.skipif(**tm.no_cupy())
@pytest.mark.skipif(**tm.no_sklearn())
def test_cupy_training_with_sklearn():
    np.random.seed(1)
    cp.random.seed(np.uint64(1))
    X = cp.random.randn(50, 10, dtype="float32")
    y = (cp.random.randn(50, dtype="float32") > 0).astype("int8")
    weights = np.random.random(50) + 1
    cupy_weights = cp.array(weights)
    base_margin = np.random.random(50)
    cupy_base_margin = cp.array(base_margin)

    clf = xgb.XGBClassifier(tree_method="hist", device="cuda:0")
    clf.fit(
        X,
        y,
        sample_weight=cupy_weights,
        base_margin=cupy_base_margin,
        eval_set=[(X, y)],
    )
    pred = clf.predict(X)
    assert np.array_equal(np.unique(pred), np.array([0, 1]))


class TestFromCupy:
    """Tests for constructing DMatrix from data structure conforming Apache
    Arrow specification."""

    @pytest.mark.skipif(**tm.no_cupy())
    def test_simple_dmat_from_cupy(self):
        _test_from_cupy(xgb.DMatrix)

    @pytest.mark.skipif(**tm.no_cupy())
    def test_device_dmat_from_cupy(self):
        _test_from_cupy(xgb.QuantileDMatrix)

    @pytest.mark.skipif(**tm.no_cupy())
    def test_cupy_training_device_dmat(self):
        _test_cupy_training(xgb.QuantileDMatrix)

    @pytest.mark.skipif(**tm.no_cupy())
    def test_cupy_training_simple_dmat(self):
        _test_cupy_training(xgb.DMatrix)

    @pytest.mark.skipif(**tm.no_cupy())
    def test_cupy_metainfo_simple_dmat(self):
        _test_cupy_metainfo(xgb.DMatrix)

    @pytest.mark.skipif(**tm.no_cupy())
    def test_cupy_metainfo_device_dmat(self):
        _test_cupy_metainfo(xgb.QuantileDMatrix)

    @pytest.mark.skipif(**tm.no_cupy())
    def test_dlpack_simple_dmat(self):
        n = 100
        X = cp.random.random((n, 2))
        xgb.DMatrix(X.toDlpack())

    @pytest.mark.skipif(**tm.no_cupy())
    def test_cupy_categorical(self):
        n_features = 10
        X, y = tm.make_categorical(10, n_features, n_categories=4, onehot=False)
        X = cp.asarray(X.values.astype(cp.float32))
        y = cp.array(y)
        feature_types = ["c"] * n_features

        assert isinstance(X, cp.ndarray)
        Xy = xgb.DMatrix(X, y, feature_types=feature_types)
        np.testing.assert_equal(np.array(Xy.feature_types), np.array(feature_types))

    @pytest.mark.skipif(**tm.no_cupy())
    def test_dlpack_device_dmat(self):
        n = 100
        X = cp.random.random((n, 2))
        m = xgb.QuantileDMatrix(X.toDlpack())

        with pytest.raises(
            xgb.core.XGBoostError, match="Slicing DMatrix is not supported"
        ):
            m.slice(rindex=[0, 1, 2])

    @pytest.mark.skipif(**tm.no_cupy())
    def test_qid(self):
        rng = cp.random.RandomState(np.uint64(1994))
        rows = 100
        cols = 10
        X, y = rng.randn(rows, cols), rng.randn(rows)
        qid = rng.randint(low=0, high=10, size=rows, dtype=np.uint32)
        qid = cp.sort(qid)

        Xy = xgb.DMatrix(X, y)
        Xy.set_info(qid=qid)
        group_ptr = Xy.get_uint_info("group_ptr")
        assert group_ptr[0] == 0
        assert group_ptr[-1] == rows

    @pytest.mark.skipif(**tm.no_cupy())
    @pytest.mark.mgpu
    def test_specified_device(self):
        cp.cuda.runtime.setDevice(0)
        dtrain = dmatrix_from_cupy(np.float32, xgb.QuantileDMatrix, np.nan)
        with pytest.raises(xgb.core.XGBoostError, match="Invalid device ordinal"):
            xgb.train(
                {"tree_method": "hist", "device": "cuda:1"}, dtrain, num_boost_round=10
            )