1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
import sys
import numpy as np
import pytest
from hypothesis import given, settings, strategies
import xgboost as xgb
from xgboost import testing as tm
from xgboost.testing import no_cupy
from xgboost.testing.data_iter import check_invalid_cat_batches, check_uneven_sizes
from xgboost.testing.updater import (
check_categorical_missing,
check_categorical_ohe,
check_extmem_qdm,
check_quantile_loss_extmem,
)
sys.path.append("tests/python")
from test_data_iterator import run_data_iterator
from test_data_iterator import test_single_batch as cpu_single_batch
# There are lots of warnings if XGBoost is not running on ATS-enabled systems.
pytestmark = pytest.mark.filterwarnings("ignore")
def test_gpu_single_batch() -> None:
cpu_single_batch("hist", "cuda")
@pytest.mark.skipif(**no_cupy())
@given(
strategies.integers(0, 1024),
strategies.integers(1, 7),
strategies.integers(0, 8),
strategies.booleans(),
strategies.booleans(),
strategies.booleans(),
)
@settings(deadline=None, max_examples=16, print_blob=True)
def test_gpu_data_iterator(
n_samples_per_batch: int,
n_features: int,
n_batches: int,
subsample: bool,
use_cupy: bool,
on_host: bool,
) -> None:
run_data_iterator(
n_samples_per_batch,
n_features,
n_batches,
"hist",
subsample=subsample,
device="cuda",
use_cupy=use_cupy,
on_host=on_host,
)
def test_cpu_data_iterator() -> None:
"""Make sure CPU algorithm can handle GPU inputs"""
run_data_iterator(
1024,
2,
3,
"approx",
device="cuda",
subsample=False,
use_cupy=True,
on_host=False,
)
@given(
strategies.integers(1, 2048),
strategies.integers(1, 8),
strategies.integers(1, 4),
strategies.integers(2, 16),
strategies.booleans(),
)
@settings(deadline=None, max_examples=10, print_blob=True)
def test_extmem_qdm(
n_samples_per_batch: int,
n_features: int,
n_batches: int,
n_bins: int,
on_host: bool,
) -> None:
check_extmem_qdm(
n_samples_per_batch,
n_features,
n_batches=n_batches,
n_bins=n_bins,
device="cuda",
on_host=on_host,
is_cat=False,
)
@given(
strategies.integers(1, 2048),
strategies.integers(1, 4),
strategies.integers(2, 16),
strategies.booleans(),
)
@settings(deadline=None, max_examples=10, print_blob=True)
@pytest.mark.skipif(**tm.no_cudf())
@pytest.mark.skipif(**tm.no_cupy())
def test_categorical_extmem_qdm(
n_samples_per_batch: int,
n_batches: int,
n_bins: int,
on_host: bool,
) -> None:
check_extmem_qdm(
n_samples_per_batch,
4,
n_batches=n_batches,
n_bins=n_bins,
device="cuda",
on_host=on_host,
is_cat=True,
)
def test_invalid_device_extmem_qdm() -> None:
it = tm.IteratorForTest(
*tm.make_batches(16, 4, 2, use_cupy=False), cache="cache", on_host=True
)
Xy = xgb.ExtMemQuantileDMatrix(it)
with pytest.raises(ValueError, match="cannot be used for GPU"):
xgb.train({"device": "cuda"}, Xy)
it = tm.IteratorForTest(
*tm.make_batches(16, 4, 2, use_cupy=True), cache="cache", on_host=True
)
Xy = xgb.ExtMemQuantileDMatrix(it)
with pytest.raises(ValueError, match="cannot be used for CPU"):
xgb.train({"device": "cpu"}, Xy)
def test_concat_pages_invalid() -> None:
it = tm.IteratorForTest(*tm.make_batches(64, 16, 4, use_cupy=True), cache=None)
Xy = xgb.ExtMemQuantileDMatrix(it)
with pytest.raises(ValueError, match="can not be used with concatenated pages"):
xgb.train(
{
"device": "cuda",
"subsample": 0.5,
"sampling_method": "gradient_based",
"extmem_single_page": True,
"objective": "reg:absoluteerror",
},
Xy,
)
def test_concat_pages() -> None:
boosters = []
for min_cache_page_bytes in [0, 256, 386, np.iinfo(np.int64).max]:
it = tm.IteratorForTest(
*tm.make_batches(64, 16, 4, use_cupy=True),
cache=None,
min_cache_page_bytes=min_cache_page_bytes,
on_host=True,
)
Xy = xgb.ExtMemQuantileDMatrix(it)
booster = xgb.train(
{
"device": "cuda",
"objective": "reg:absoluteerror",
},
Xy,
)
boosters.append(booster.save_raw(raw_format="json"))
for model in boosters[1:]:
assert str(model) == str(boosters[0])
@given(
strategies.integers(1, 64),
strategies.integers(1, 8),
strategies.integers(1, 4),
)
@settings(deadline=None, max_examples=10, print_blob=True)
def test_quantile_objective(
n_samples_per_batch: int, n_features: int, n_batches: int
) -> None:
check_quantile_loss_extmem(
n_samples_per_batch,
n_features,
n_batches,
"hist",
"cuda",
)
check_quantile_loss_extmem(
n_samples_per_batch,
n_features,
n_batches,
"approx",
"cuda",
)
@pytest.mark.parametrize("tree_method", ["hist", "approx"])
@pytest.mark.skipif(**tm.no_cudf())
@pytest.mark.skipif(**tm.no_cupy())
def test_categorical_missing(tree_method: str) -> None:
check_categorical_missing(
1024, 4, 5, device="cuda", tree_method=tree_method, extmem=True
)
@pytest.mark.parametrize("tree_method", ["hist", "approx"])
@pytest.mark.skipif(**tm.no_cudf())
@pytest.mark.skipif(**tm.no_cupy())
def test_categorical_ohe(tree_method: str) -> None:
check_categorical_ohe(
rows=1024,
cols=16,
rounds=4,
cats=5,
device="cuda",
tree_method=tree_method,
extmem=True,
)
@pytest.mark.skipif(**tm.no_cudf())
@pytest.mark.skipif(**tm.no_cupy())
def test_invalid_cat_batches() -> None:
check_invalid_cat_batches("cuda")
def test_uneven_sizes() -> None:
check_uneven_sizes("cuda")
|