1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
|
"""Test model IO with pickle."""
import os
import pickle
import subprocess
import numpy as np
import pytest
import xgboost as xgb
from xgboost import XGBClassifier
from xgboost import testing as tm
model_path = "./model.pkl"
pytestmark = tm.timeout(30)
def build_dataset():
N = 10
x = np.linspace(0, N * N, N * N)
x = x.reshape((N, N))
y = np.linspace(0, N, N)
return x, y
def save_pickle(bst, path):
with open(path, "wb") as fd:
pickle.dump(bst, fd)
def load_pickle(path):
with open(path, "rb") as fd:
bst = pickle.load(fd)
return bst
class TestPickling:
args_template = ["pytest", "--verbose", "-s", "--fulltrace"]
def run_pickling(self, bst) -> None:
save_pickle(bst, model_path)
args = [
"pytest",
"--verbose",
"-s",
"--fulltrace",
"./tests/python-gpu/load_pickle.py::TestLoadPickle::test_load_pkl",
]
command = ""
for arg in args:
command += arg
command += " "
cuda_environment = {"CUDA_VISIBLE_DEVICES": "-1"}
env = os.environ.copy()
# Passing new_environment directly to `env' argument results
# in failure on Windows:
# Fatal Python error: _Py_HashRandomization_Init: failed to
# get random numbers to initialize Python
env.update(cuda_environment)
# Load model in a CPU only environment.
status = subprocess.call(command, env=env, shell=True)
assert status == 0
os.remove(model_path)
# TODO: This test is too slow
@pytest.mark.skipif(**tm.no_sklearn())
def test_pickling(self):
x, y = build_dataset()
train_x = xgb.DMatrix(x, label=y)
param = {"tree_method": "gpu_hist", "gpu_id": 0}
bst = xgb.train(param, train_x)
self.run_pickling(bst)
bst = xgb.XGBRegressor(**param).fit(x, y)
self.run_pickling(bst)
param = {"booster": "gblinear", "updater": "gpu_coord_descent", "gpu_id": 0}
bst = xgb.train(param, train_x)
self.run_pickling(bst)
bst = xgb.XGBRegressor(**param).fit(x, y)
self.run_pickling(bst)
@pytest.mark.mgpu
def test_wrap_gpu_id(self):
X, y = build_dataset()
dtrain = xgb.DMatrix(X, y)
bst = xgb.train(
{"tree_method": "gpu_hist", "gpu_id": 1}, dtrain, num_boost_round=6
)
model_path = "model.pkl"
save_pickle(bst, model_path)
cuda_environment = {"CUDA_VISIBLE_DEVICES": "0"}
env = os.environ.copy()
env.update(cuda_environment)
args = self.args_template.copy()
args.append(
"./tests/python-gpu/" "load_pickle.py::TestLoadPickle::test_wrap_gpu_id"
)
status = subprocess.call(args, env=env)
assert status == 0
os.remove(model_path)
def test_pickled_context(self):
x, y = tm.make_sparse_regression(10, 10, sparsity=0.8, as_dense=True)
train_x = xgb.DMatrix(x, label=y)
param = {"tree_method": "gpu_hist", "verbosity": 1}
bst = xgb.train(param, train_x)
save_pickle(bst, model_path)
args = self.args_template.copy()
root = tm.project_root(__file__)
path = os.path.join(root, "tests", "python-gpu", "load_pickle.py")
args.append(path + "::TestLoadPickle::test_context_is_removed")
cuda_environment = {"CUDA_VISIBLE_DEVICES": "-1"}
env = os.environ.copy()
env.update(cuda_environment)
# Load model in a CPU only environment.
status = subprocess.call(args, env=env)
assert status == 0
args = self.args_template.copy()
args.append(
"./tests/python-gpu/"
"load_pickle.py::TestLoadPickle::test_context_is_preserved"
)
# Load in environment that has GPU.
env = os.environ.copy()
assert "CUDA_VISIBLE_DEVICES" not in env.keys()
status = subprocess.call(args, env=env)
assert status == 0
os.remove(model_path)
@pytest.mark.skipif(**tm.no_sklearn())
def test_predict_sklearn_pickle(self) -> None:
from sklearn.datasets import load_digits
x, y = load_digits(return_X_y=True)
kwargs = {
"tree_method": "gpu_hist",
"objective": "binary:logistic",
"gpu_id": 0,
"n_estimators": 10,
}
model = XGBClassifier(**kwargs)
model.fit(x, y)
save_pickle(model, "model.pkl")
del model
# load model
model = load_pickle("model.pkl")
os.remove("model.pkl")
gpu_pred = model.predict(x, output_margin=True)
# Switch to CPU predictor
bst = model.get_booster()
bst.set_param({"device": "cpu"})
cpu_pred = model.predict(x, output_margin=True)
np.testing.assert_allclose(cpu_pred, gpu_pred, rtol=1e-5)
def test_training_on_cpu_only_env(self):
cuda_environment = {"CUDA_VISIBLE_DEVICES": "-1"}
env = os.environ.copy()
env.update(cuda_environment)
args = self.args_template.copy()
args.append(
"./tests/python-gpu/"
"load_pickle.py::TestLoadPickle::test_training_on_cpu_only_env"
)
status = subprocess.call(args, env=env)
assert status == 0
|