1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
import sys
import unittest
import pytest
import numpy as np
import xgboost as xgb
from hypothesis import given, strategies, assume, settings, note
from xgboost import testing as tm
rng = np.random.RandomState(1994)
shap_parameter_strategy = strategies.fixed_dictionaries(
{
"max_depth": strategies.integers(1, 11),
"max_leaves": strategies.integers(0, 256),
"num_parallel_tree": strategies.sampled_from([1, 10]),
}
).filter(lambda x: x["max_depth"] > 0 or x["max_leaves"] > 0)
class TestSYCLPredict(unittest.TestCase):
def test_predict(self):
iterations = 10
np.random.seed(1)
test_num_rows = [10, 1000, 5000]
test_num_cols = [10, 50, 500]
for num_rows in test_num_rows:
for num_cols in test_num_cols:
dtrain = xgb.DMatrix(
np.random.randn(num_rows, num_cols),
label=[0, 1] * int(num_rows / 2),
)
dval = xgb.DMatrix(
np.random.randn(num_rows, num_cols),
label=[0, 1] * int(num_rows / 2),
)
dtest = xgb.DMatrix(
np.random.randn(num_rows, num_cols),
label=[0, 1] * int(num_rows / 2),
)
watchlist = [(dtrain, "train"), (dval, "validation")]
res = {}
param = {
"objective": "binary:logistic",
"eval_metric": "logloss",
"tree_method": "hist",
"device": "cpu",
"max_depth": 1,
"verbosity": 0,
}
bst = xgb.train(
param, dtrain, iterations, evals=watchlist, evals_result=res
)
assert tm.non_increasing(res["train"]["logloss"])
cpu_pred_train = bst.predict(dtrain, output_margin=True)
cpu_pred_test = bst.predict(dtest, output_margin=True)
cpu_pred_val = bst.predict(dval, output_margin=True)
bst.set_param({"device": "sycl"})
sycl_pred_train = bst.predict(dtrain, output_margin=True)
sycl_pred_test = bst.predict(dtest, output_margin=True)
sycl_pred_val = bst.predict(dval, output_margin=True)
np.testing.assert_allclose(cpu_pred_train, sycl_pred_train, rtol=1e-6)
np.testing.assert_allclose(cpu_pred_val, sycl_pred_val, rtol=1e-6)
np.testing.assert_allclose(cpu_pred_test, sycl_pred_test, rtol=1e-6)
@pytest.mark.skipif(**tm.no_sklearn())
def test_multi_predict(self):
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
n = 1000
X, y = make_regression(n, random_state=rng)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=123)
dtrain = xgb.DMatrix(X_train, label=y_train)
dtest = xgb.DMatrix(X_test)
params = {}
params["tree_method"] = "hist"
params["device"] = "cpu"
bst = xgb.train(params, dtrain)
cpu_predict = bst.predict(dtest)
bst.set_param({"device": "sycl"})
predict0 = bst.predict(dtest)
predict1 = bst.predict(dtest)
assert np.allclose(predict0, predict1)
assert np.allclose(predict0, cpu_predict)
@pytest.mark.skipif(**tm.no_sklearn())
def test_sklearn(self):
m, n = 15000, 14
tr_size = 2500
X = np.random.rand(m, n)
y = 200 * np.matmul(X, np.arange(-3, -3 + n))
X_train, y_train = X[:tr_size, :], y[:tr_size]
X_test, y_test = X[tr_size:, :], y[tr_size:]
# First with cpu_predictor
params = {
"tree_method": "hist",
"device": "cpu",
"n_jobs": -1,
"verbosity": 0,
"seed": 123,
}
m = xgb.XGBRegressor(**params).fit(X_train, y_train)
cpu_train_score = m.score(X_train, y_train)
cpu_test_score = m.score(X_test, y_test)
# Now with sycl_predictor
params["device"] = "sycl"
m.set_params(**params)
sycl_train_score = m.score(X_train, y_train)
sycl_test_score = m.score(X_test, y_test)
assert np.allclose(cpu_train_score, sycl_train_score)
assert np.allclose(cpu_test_score, sycl_test_score)
@given(
strategies.integers(1, 10), tm.make_dataset_strategy(), shap_parameter_strategy
)
@settings(deadline=None)
def test_shap(self, num_rounds, dataset, param):
if dataset.name.endswith("-l1"): # not supported by the exact tree method
return
param.update({"tree_method": "hist", "device": "cpu"})
param = dataset.set_params(param)
dmat = dataset.get_dmat()
bst = xgb.train(param, dmat, num_rounds)
test_dmat = xgb.DMatrix(dataset.X, dataset.y, dataset.w, dataset.margin)
bst.set_param({"device": "sycl"})
shap = bst.predict(test_dmat, pred_contribs=True)
margin = bst.predict(test_dmat, output_margin=True)
assume(len(dataset.y) > 0)
assert np.allclose(np.sum(shap, axis=len(shap.shape) - 1), margin, 1e-3, 1e-3)
@given(
strategies.integers(1, 10), tm.make_dataset_strategy(), shap_parameter_strategy
)
@settings(deadline=None, max_examples=20)
def test_shap_interactions(self, num_rounds, dataset, param):
if dataset.name.endswith("-l1"): # not supported by the exact tree method
return
param.update({"tree_method": "hist", "device": "cpu"})
param = dataset.set_params(param)
dmat = dataset.get_dmat()
bst = xgb.train(param, dmat, num_rounds)
test_dmat = xgb.DMatrix(dataset.X, dataset.y, dataset.w, dataset.margin)
bst.set_param({"device": "sycl"})
shap = bst.predict(test_dmat, pred_interactions=True)
margin = bst.predict(test_dmat, output_margin=True)
assume(len(dataset.y) > 0)
assert np.allclose(
np.sum(shap, axis=(len(shap.shape) - 1, len(shap.shape) - 2)),
margin,
1e-3,
1e-3,
)
|