1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
|
import numpy as np
import xgboost as xgb
import json
rng = np.random.RandomState(1994)
class TestSYCLTrainingContinuation:
def run_training_continuation(self, use_json):
kRows = 64
kCols = 32
X = np.random.randn(kRows, kCols)
y = np.random.randn(kRows)
dtrain = xgb.DMatrix(X, y)
params = {
"device": "sycl",
"max_depth": "2",
"gamma": "0.1",
"alpha": "0.01",
"enable_experimental_json_serialization": use_json,
}
bst_0 = xgb.train(params, dtrain, num_boost_round=64)
dump_0 = bst_0.get_dump(dump_format="json")
bst_1 = xgb.train(params, dtrain, num_boost_round=32)
bst_1 = xgb.train(params, dtrain, num_boost_round=32, xgb_model=bst_1)
dump_1 = bst_1.get_dump(dump_format="json")
def recursive_compare(obj_0, obj_1):
if isinstance(obj_0, float):
assert np.isclose(obj_0, obj_1, atol=1e-6)
elif isinstance(obj_0, str):
assert obj_0 == obj_1
elif isinstance(obj_0, int):
assert obj_0 == obj_1
elif isinstance(obj_0, dict):
keys_0 = list(obj_0.keys())
keys_1 = list(obj_1.keys())
values_0 = list(obj_0.values())
values_1 = list(obj_1.values())
for i in range(len(obj_0.items())):
assert keys_0[i] == keys_1[i]
if list(obj_0.keys())[i] != "missing":
recursive_compare(values_0[i], values_1[i])
else:
for i in range(len(obj_0)):
recursive_compare(obj_0[i], obj_1[i])
assert len(dump_0) == len(dump_1)
for i in range(len(dump_0)):
obj_0 = json.loads(dump_0[i])
obj_1 = json.loads(dump_1[i])
recursive_compare(obj_0, obj_1)
def test_sycl_training_continuation_binary(self):
self.run_training_continuation(False)
def test_sycl_training_continuation_json(self):
self.run_training_continuation(True)
|