1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
import os
import numpy as np
import xgboost
kRounds = 2
kRows = 1000
kCols = 4
kForests = 2
kMaxDepth = 2
kClasses = 3
X = np.random.randn(kRows, kCols)
w = np.random.uniform(size=kRows)
version = xgboost.__version__
np.random.seed(1994)
target_dir = 'models'
def booster_bin(model):
return os.path.join(target_dir,
'xgboost-' + version + '.' + model + '.bin')
def booster_json(model):
return os.path.join(target_dir,
'xgboost-' + version + '.' + model + '.json')
def skl_bin(model):
return os.path.join(target_dir,
'xgboost_scikit-' + version + '.' + model + '.bin')
def skl_json(model):
return os.path.join(target_dir,
'xgboost_scikit-' + version + '.' + model + '.json')
def generate_regression_model():
print('Regression')
y = np.random.randn(kRows)
data = xgboost.DMatrix(X, label=y, weight=w)
booster = xgboost.train({'tree_method': 'hist',
'num_parallel_tree': kForests,
'max_depth': kMaxDepth},
num_boost_round=kRounds, dtrain=data)
booster.save_model(booster_bin('reg'))
booster.save_model(booster_json('reg'))
reg = xgboost.XGBRegressor(tree_method='hist',
num_parallel_tree=kForests,
max_depth=kMaxDepth,
n_estimators=kRounds)
reg.fit(X, y, w)
reg.save_model(skl_bin('reg'))
reg.save_model(skl_json('reg'))
def generate_logistic_model():
print('Logistic')
y = np.random.randint(0, 2, size=kRows)
assert y.max() == 1 and y.min() == 0
for objective, name in [('binary:logistic', 'logit'), ('binary:logitraw', 'logitraw')]:
data = xgboost.DMatrix(X, label=y, weight=w)
booster = xgboost.train({'tree_method': 'hist',
'num_parallel_tree': kForests,
'max_depth': kMaxDepth,
'objective': objective},
num_boost_round=kRounds, dtrain=data)
booster.save_model(booster_bin(name))
booster.save_model(booster_json(name))
reg = xgboost.XGBClassifier(tree_method='hist',
num_parallel_tree=kForests,
max_depth=kMaxDepth,
n_estimators=kRounds,
objective=objective)
reg.fit(X, y, w)
reg.save_model(skl_bin(name))
reg.save_model(skl_json(name))
def generate_classification_model():
print('Classification')
y = np.random.randint(0, kClasses, size=kRows)
data = xgboost.DMatrix(X, label=y, weight=w)
booster = xgboost.train({'num_class': kClasses,
'tree_method': 'hist',
'num_parallel_tree': kForests,
'max_depth': kMaxDepth},
num_boost_round=kRounds, dtrain=data)
booster.save_model(booster_bin('cls'))
booster.save_model(booster_json('cls'))
cls = xgboost.XGBClassifier(tree_method='hist',
num_parallel_tree=kForests,
max_depth=kMaxDepth,
n_estimators=kRounds)
cls.fit(X, y, w)
cls.save_model(skl_bin('cls'))
cls.save_model(skl_json('cls'))
def generate_ranking_model():
print('Learning to Rank')
y = np.random.randint(5, size=kRows)
w = np.random.uniform(size=20)
g = np.repeat(50, 20)
data = xgboost.DMatrix(X, y, weight=w)
data.set_group(g)
booster = xgboost.train({'objective': 'rank:ndcg',
'num_parallel_tree': kForests,
'tree_method': 'hist',
'max_depth': kMaxDepth},
num_boost_round=kRounds,
dtrain=data)
booster.save_model(booster_bin('ltr'))
booster.save_model(booster_json('ltr'))
ranker = xgboost.sklearn.XGBRanker(n_estimators=kRounds,
tree_method='hist',
objective='rank:ndcg',
max_depth=kMaxDepth,
num_parallel_tree=kForests)
ranker.fit(X, y, g, sample_weight=w)
ranker.save_model(skl_bin('ltr'))
ranker.save_model(skl_json('ltr'))
def write_versions():
versions = {'numpy': np.__version__,
'xgboost': version}
with open(os.path.join(target_dir, 'version'), 'w') as fd:
fd.write(str(versions))
if __name__ == '__main__':
if not os.path.exists(target_dir):
os.mkdir(target_dir)
generate_regression_model()
generate_logistic_model()
generate_classification_model()
generate_ranking_model()
write_versions()
|