File: test_basic.py

package info (click to toggle)
xgboost 3.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 13,796 kB
  • sloc: cpp: 67,502; python: 35,503; java: 4,676; ansic: 1,426; sh: 1,320; xml: 1,197; makefile: 204; javascript: 19
file content (329 lines) | stat: -rw-r--r-- 11,839 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import json
import os
import pathlib
import tempfile
from pathlib import Path

import numpy as np
import pytest

import xgboost as xgb
from xgboost import testing as tm
from xgboost.core import _parse_version

dpath = "demo/data/"
rng = np.random.RandomState(1994)


class TestBasic:
    def test_compat(self):
        from xgboost.compat import lazy_isinstance

        a = np.array([1, 2, 3])
        assert lazy_isinstance(a, "numpy", "ndarray")
        assert not lazy_isinstance(a, "numpy", "dataframe")

    def test_basic(self):
        dtrain, dtest = tm.load_agaricus(__file__)
        param = {"max_depth": 2, "eta": 1, "objective": "binary:logistic"}
        # specify validations set to watch performance
        watchlist = [(dtrain, "train")]
        num_round = 2
        bst = xgb.train(param, dtrain, num_round, evals=watchlist, verbose_eval=True)

        preds = bst.predict(dtrain)
        labels = dtrain.get_label()
        err = sum(
            1 for i in range(len(preds)) if int(preds[i] > 0.5) != labels[i]
        ) / float(len(preds))
        # error must be smaller than 10%
        assert err < 0.1

        preds = bst.predict(dtest)
        labels = dtest.get_label()
        err = sum(
            1 for i in range(len(preds)) if int(preds[i] > 0.5) != labels[i]
        ) / float(len(preds))
        # error must be smaller than 10%
        assert err < 0.1

        with tempfile.TemporaryDirectory() as tmpdir:
            dtest_path = os.path.join(tmpdir, "dtest.dmatrix")
            # save dmatrix into binary buffer
            dtest.save_binary(dtest_path)
            # save model
            model_path = os.path.join(tmpdir, "model.ubj")
            bst.save_model(model_path)
            # load model and data in
            bst2 = xgb.Booster(model_file=model_path)
            dtest2 = xgb.DMatrix(dtest_path)
            preds2 = bst2.predict(dtest2)
            # assert they are the same
            assert np.sum(np.abs(preds2 - preds)) == 0

    def test_metric_config(self):
        # Make sure that the metric configuration happens in booster so the string
        # `['error', 'auc']` doesn't get passed down to core.
        dtrain, dtest = tm.load_agaricus(__file__)
        param = {
            "max_depth": 2,
            "eta": 1,
            "objective": "binary:logistic",
            "eval_metric": ["error", "auc"],
        }
        watchlist = [(dtest, "eval"), (dtrain, "train")]
        num_round = 2
        booster = xgb.train(param, dtrain, num_round, evals=watchlist)
        predt_0 = booster.predict(dtrain)
        with tempfile.TemporaryDirectory() as tmpdir:
            path = os.path.join(tmpdir, "model.json")
            booster.save_model(path)

            booster = xgb.Booster(params=param, model_file=path)
            predt_1 = booster.predict(dtrain)
            np.testing.assert_allclose(predt_0, predt_1)

    def test_multiclass(self):
        dtrain, dtest = tm.load_agaricus(__file__)
        param = {"max_depth": 2, "eta": 1, "num_class": 2}
        # specify validations set to watch performance
        watchlist = [(dtest, "eval"), (dtrain, "train")]
        num_round = 2
        bst = xgb.train(param, dtrain, num_round, evals=watchlist)
        # this is prediction
        preds = bst.predict(dtest)
        labels = dtest.get_label()
        err = sum(1 for i in range(len(preds)) if preds[i] != labels[i]) / float(
            len(preds)
        )
        # error must be smaller than 10%
        assert err < 0.1

        with tempfile.TemporaryDirectory() as tmpdir:
            dtest_path = os.path.join(tmpdir, "dtest.buffer")
            model_path = os.path.join(tmpdir, "model.ubj")
            # save dmatrix into binary buffer
            dtest.save_binary(dtest_path)
            # save model
            bst.save_model(model_path)
            # load model and data in
            bst2 = xgb.Booster(model_file=model_path)
            dtest2 = xgb.DMatrix(dtest_path)
            preds2 = bst2.predict(dtest2)
            # assert they are the same
            assert np.sum(np.abs(preds2 - preds)) == 0

    def test_dump(self):
        data = np.random.randn(100, 2)
        target = np.array([0, 1] * 50)
        features = ["Feature1", "Feature2"]

        dm = xgb.DMatrix(data, label=target, feature_names=features)
        params = {
            "objective": "binary:logistic",
            "eval_metric": "logloss",
            "eta": 0.3,
            "max_depth": 1,
        }

        bst = xgb.train(params, dm, num_boost_round=1)

        # number of feature importances should == number of features
        dump1 = bst.get_dump()
        assert len(dump1) == 1, "Expected only 1 tree to be dumped."
        len(
            dump1[0].splitlines()
        ) == 3, "Expected 1 root and 2 leaves - 3 lines in dump."

        dump2 = bst.get_dump(with_stats=True)
        assert (
            dump2[0].count("\n") == 3
        ), "Expected 1 root and 2 leaves - 3 lines in dump."
        msg = "Expected more info when with_stats=True is given."
        assert dump2[0].find("\n") > dump1[0].find("\n"), msg

        dump3 = bst.get_dump(dump_format="json")
        dump3j = json.loads(dump3[0])
        assert dump3j["nodeid"] == 0, "Expected the root node on top."

        dump4 = bst.get_dump(dump_format="json", with_stats=True)
        dump4j = json.loads(dump4[0])
        assert "gain" in dump4j, "Expected 'gain' to be dumped in JSON."

        with pytest.raises(ValueError):
            bst.get_dump(fmap="foo")

    def test_feature_score(self):
        rng = np.random.RandomState(0)
        data = rng.randn(100, 2)
        target = np.array([0, 1] * 50)
        features = ["F0"]
        with pytest.raises(ValueError):
            xgb.DMatrix(data, label=target, feature_names=features)

        params = {"objective": "binary:logistic"}
        dm = xgb.DMatrix(data, label=target, feature_names=["F0", "F1"])
        booster = xgb.train(params, dm, num_boost_round=1)
        # no error since feature names might be assigned before the booster seeing data
        # and booster doesn't known about the actual number of features.
        booster.feature_names = ["F0"]
        with pytest.raises(ValueError):
            booster.get_fscore()

        booster.feature_names = None
        # Use JSON to make sure the output has native Python type
        scores = json.loads(json.dumps(booster.get_fscore()))
        np.testing.assert_allclose(scores["f0"], 6.0)

    def test_load_file_invalid(self):
        with pytest.raises(xgb.core.XGBoostError):
            xgb.Booster(model_file="incorrect_path")

        with pytest.raises(xgb.core.XGBoostError):
            xgb.Booster(model_file="不正なパス")

    @pytest.mark.parametrize(
        "path", ["모델.ubj", "がうる・ぐら.json"], ids=["path-0", "path-1"]
    )
    def test_unicode_path(self, tmpdir, path):
        model_path = pathlib.Path(tmpdir) / path
        dtrain, _ = tm.load_agaricus(__file__)
        param = {"max_depth": 2, "eta": 1, "objective": "binary:logistic"}
        bst = xgb.train(param, dtrain, num_boost_round=2)
        bst.save_model(model_path)

        bst2 = xgb.Booster(model_file=model_path)
        assert bst.get_dump(dump_format="text") == bst2.get_dump(dump_format="text")

    def test_dmatrix_numpy_init_omp(self):
        rows = [1000, 11326, 15000]
        cols = 50
        for row in rows:
            X = np.random.randn(row, cols)
            y = np.random.randn(row).astype("f")
            dm = xgb.DMatrix(X, y, nthread=0)
            np.testing.assert_array_equal(dm.get_label(), y)
            assert dm.num_row() == row
            assert dm.num_col() == cols

            dm = xgb.DMatrix(X, y, nthread=10)
            np.testing.assert_array_equal(dm.get_label(), y)
            assert dm.num_row() == row
            assert dm.num_col() == cols

    def test_cv(self):
        dm, _ = tm.load_agaricus(__file__)
        params = {"max_depth": 2, "eta": 1, "objective": "binary:logistic"}

        # return np.ndarray
        cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, as_pandas=False)
        assert isinstance(cv, dict)
        assert len(cv) == (4)

    def test_cv_no_shuffle(self):
        dm, _ = tm.load_agaricus(__file__)
        params = {"max_depth": 2, "eta": 1, "objective": "binary:logistic"}

        # return np.ndarray
        cv = xgb.cv(
            params, dm, num_boost_round=10, shuffle=False, nfold=10, as_pandas=False
        )
        assert isinstance(cv, dict)
        assert len(cv) == (4)

    def test_cv_explicit_fold_indices(self):
        dm, _ = tm.load_agaricus(__file__)
        params = {"max_depth": 2, "eta": 1, "objective": "binary:logistic"}
        folds = [
            # Train        Test
            ([1, 3], [5, 8]),
            ([7, 9], [23, 43]),
        ]

        # return np.ndarray
        cv = xgb.cv(params, dm, num_boost_round=10, folds=folds, as_pandas=False)
        assert isinstance(cv, dict)
        assert len(cv) == (4)

    def test_cv_explicit_fold_indices_labels(self):
        params = {"max_depth": 2, "eta": 1, "objective": "reg:squarederror"}
        N = 100
        F = 3
        dm = xgb.DMatrix(data=np.random.randn(N, F), label=np.arange(N))
        folds = [
            # Train        Test
            ([1, 3], [5, 8]),
            ([7, 9], [23, 43, 11]),
        ]

        # Use callback to log the test labels in each fold
        class Callback(xgb.callback.TrainingCallback):
            def __init__(self) -> None:
                super().__init__()

            def after_iteration(
                self,
                model,
                epoch: int,
                evals_log: xgb.callback.TrainingCallback.EvalsLog,
            ):
                print([fold.dtest.get_label() for fold in model.cvfolds])

        cb = Callback()

        # Run cross validation and capture standard out to test callback result
        with tm.captured_output() as (out, err):
            xgb.cv(
                params,
                dm,
                num_boost_round=1,
                folds=folds,
                callbacks=[cb],
                as_pandas=False,
            )
            output = out.getvalue().strip()
        solution = (
            "[array([5., 8.], dtype=float32), array([23., 43., 11.],"
            + " dtype=float32)]"
        )
        assert output == solution


class TestBasicPathLike:
    """Unit tests using pathlib.Path for file interaction."""

    def test_DMatrix_init_from_path(self):
        """Initialization from the data path."""
        dtrain, _ = tm.load_agaricus(__file__)
        assert dtrain.num_row() == 6513
        assert dtrain.num_col() == 127

    def test_DMatrix_save_to_path(self):
        """Saving to a binary file using pathlib from a DMatrix."""
        data = np.random.randn(100, 2)
        target = np.array([0, 1] * 50)
        features = ["Feature1", "Feature2"]

        dm = xgb.DMatrix(data, label=target, feature_names=features)

        # save, assert exists, remove file
        binary_path = Path("dtrain.bin")
        dm.save_binary(binary_path)
        assert binary_path.exists()
        Path.unlink(binary_path)

    def test_Booster_init_invalid_path(self):
        """An invalid model_file path should raise XGBoostError."""
        with pytest.raises(xgb.core.XGBoostError):
            xgb.Booster(model_file=Path("invalidpath"))


def test_parse_ver() -> None:
    (major, minor, patch), post = _parse_version("2.1.0")
    assert post == ""
    (major, minor, patch), post = _parse_version("2.1.0-dev")
    assert post == "dev"
    (major, minor, patch), post = _parse_version("2.1.0rc1")
    assert post == "rc1"
    (major, minor, patch), post = _parse_version("2.1.0.post1")
    assert post == "post1"