File: test_callback.py

package info (click to toggle)
xgboost 3.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 13,796 kB
  • sloc: cpp: 67,502; python: 35,503; java: 4,676; ansic: 1,426; sh: 1,320; xml: 1,197; makefile: 204; javascript: 19
file content (546 lines) | stat: -rw-r--r-- 20,027 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
import json
import os
import tempfile
from collections import namedtuple
from typing import Tuple, Union

import numpy as np
import pytest

import xgboost as xgb
from xgboost import testing as tm

# We use the dataset for tests.
pytestmark = pytest.mark.skipif(**tm.no_sklearn())


BreastCancer = namedtuple("BreastCancer", ["full", "tr", "va"])


@pytest.fixture
def breast_cancer() -> BreastCancer:
    from sklearn.datasets import load_breast_cancer

    X, y = load_breast_cancer(return_X_y=True)

    split = int(X.shape[0] * 0.8)
    return BreastCancer(
        full=(X, y),
        tr=(X[:split, ...], y[:split, ...]),
        va=(X[split:, ...], y[split:, ...]),
    )


def eval_error_metric(predt: np.ndarray, dtrain: xgb.DMatrix) -> Tuple[str, np.float64]:
    # No custom objective, recieve transformed output
    return tm.eval_error_metric(predt, dtrain, rev_link=False)


class TestCallbacks:
    def run_evaluation_monitor(
        self,
        D_train: xgb.DMatrix,
        D_valid: xgb.DMatrix,
        rounds: int,
        verbose_eval: Union[bool, int],
    ):
        def check_output(output: str) -> None:
            if int(verbose_eval) == 1:
                # Should print each iteration info
                assert len(output.split("\n")) == rounds
            elif int(verbose_eval) > rounds:
                # Should print first and latest iteration info
                assert len(output.split("\n")) == 2
            else:
                # Should print info by each period additionaly to first and latest
                # iteration
                num_periods = rounds // int(verbose_eval)
                # Extra information is required for latest iteration
                is_extra_info_required = num_periods * int(verbose_eval) < (rounds - 1)
                assert len(output.split("\n")) == (
                    1 + num_periods + int(is_extra_info_required)
                )

        evals_result: xgb.callback.TrainingCallback.EvalsLog = {}
        params = {"objective": "binary:logistic", "eval_metric": "error"}
        with tm.captured_output() as (out, err):
            xgb.train(
                params,
                D_train,
                evals=[(D_train, "Train"), (D_valid, "Valid")],
                num_boost_round=rounds,
                evals_result=evals_result,
                verbose_eval=verbose_eval,
            )
            output: str = out.getvalue().strip()
            check_output(output)

        with tm.captured_output() as (out, err):
            xgb.cv(params, D_train, num_boost_round=rounds, verbose_eval=verbose_eval)
            output = out.getvalue().strip()
            check_output(output)

    def test_evaluation_monitor(self, breast_cancer: BreastCancer) -> None:
        D_train = xgb.DMatrix(breast_cancer.tr[0], breast_cancer.tr[1])
        D_valid = xgb.DMatrix(breast_cancer.va[0], breast_cancer.va[1])
        evals_result = {}
        rounds = 10
        xgb.train(
            {"objective": "binary:logistic", "eval_metric": "error"},
            D_train,
            evals=[(D_train, "Train"), (D_valid, "Valid")],
            num_boost_round=rounds,
            evals_result=evals_result,
            verbose_eval=True,
        )
        assert len(evals_result["Train"]["error"]) == rounds
        assert len(evals_result["Valid"]["error"]) == rounds

        self.run_evaluation_monitor(D_train, D_valid, rounds, True)
        self.run_evaluation_monitor(D_train, D_valid, rounds, 2)
        self.run_evaluation_monitor(D_train, D_valid, rounds, 4)
        self.run_evaluation_monitor(D_train, D_valid, rounds, rounds + 1)

    def test_early_stopping(self, breast_cancer: BreastCancer) -> None:
        D_train = xgb.DMatrix(breast_cancer.tr[0], breast_cancer.tr[1])
        D_valid = xgb.DMatrix(breast_cancer.va[0], breast_cancer.va[1])
        evals_result = {}
        rounds = 30
        early_stopping_rounds = 5
        booster = xgb.train(
            {"objective": "binary:logistic", "eval_metric": "error"},
            D_train,
            evals=[(D_train, "Train"), (D_valid, "Valid")],
            num_boost_round=rounds,
            evals_result=evals_result,
            verbose_eval=True,
            early_stopping_rounds=early_stopping_rounds,
        )
        dump = booster.get_dump(dump_format="json")
        assert len(dump) - booster.best_iteration == early_stopping_rounds + 1

    def test_early_stopping_custom_eval(self, breast_cancer: BreastCancer) -> None:
        D_train = xgb.DMatrix(breast_cancer.tr[0], breast_cancer.tr[1])
        D_valid = xgb.DMatrix(breast_cancer.va[0], breast_cancer.va[1])
        early_stopping_rounds = 5
        booster = xgb.train(
            {
                "objective": "binary:logistic",
                "eval_metric": "error",
                "tree_method": "hist",
            },
            D_train,
            evals=[(D_train, "Train"), (D_valid, "Valid")],
            custom_metric=eval_error_metric,
            num_boost_round=1000,
            early_stopping_rounds=early_stopping_rounds,
            verbose_eval=False,
        )
        dump = booster.get_dump(dump_format="json")
        assert len(dump) - booster.best_iteration == early_stopping_rounds + 1

    def test_early_stopping_customize(self, breast_cancer: BreastCancer) -> None:
        D_train = xgb.DMatrix(breast_cancer.tr[0], breast_cancer.tr[1])
        D_valid = xgb.DMatrix(breast_cancer.va[0], breast_cancer.va[1])
        early_stopping_rounds = 5
        early_stop = xgb.callback.EarlyStopping(
            rounds=early_stopping_rounds, metric_name="CustomErr", data_name="Train"
        )
        # Specify which dataset and which metric should be used for early stopping.
        booster = xgb.train(
            {
                "objective": "binary:logistic",
                "eval_metric": ["error", "rmse"],
                "tree_method": "hist",
            },
            D_train,
            evals=[(D_train, "Train"), (D_valid, "Valid")],
            custom_metric=eval_error_metric,
            num_boost_round=1000,
            callbacks=[early_stop],
            verbose_eval=False,
        )
        dump = booster.get_dump(dump_format="json")
        assert len(dump) - booster.best_iteration == early_stopping_rounds + 1
        assert len(early_stop.stopping_history["Train"]["CustomErr"]) == len(dump)

        rounds = 100
        early_stop = xgb.callback.EarlyStopping(
            rounds=early_stopping_rounds,
            metric_name="CustomErr",
            data_name="Train",
            min_delta=100,
            save_best=True,
        )
        booster = xgb.train(
            {
                "objective": "binary:logistic",
                "eval_metric": ["error", "rmse"],
                "tree_method": "hist",
            },
            D_train,
            evals=[(D_train, "Train"), (D_valid, "Valid")],
            # No custom objective, transformed output
            custom_metric=eval_error_metric,
            num_boost_round=rounds,
            callbacks=[early_stop],
            verbose_eval=False,
        )
        # No iteration can be made with min_delta == 100
        assert booster.best_iteration == 0
        assert booster.num_boosted_rounds() == 1

    def test_early_stopping_skl(self, breast_cancer: BreastCancer) -> None:
        X, y = breast_cancer.full
        early_stopping_rounds = 5
        cls = xgb.XGBClassifier(
            early_stopping_rounds=early_stopping_rounds, eval_metric="error"
        )
        cls.fit(X, y, eval_set=[(X, y)])
        booster = cls.get_booster()
        dump = booster.get_dump(dump_format="json")
        assert len(dump) - booster.best_iteration == early_stopping_rounds + 1

    def test_early_stopping_custom_eval_skl(self, breast_cancer: BreastCancer) -> None:
        X, y = breast_cancer.full
        early_stopping_rounds = 5
        early_stop = xgb.callback.EarlyStopping(rounds=early_stopping_rounds)
        cls = xgb.XGBClassifier(
            eval_metric=tm.eval_error_metric_skl, callbacks=[early_stop]
        )
        cls.fit(X, y, eval_set=[(X, y)])
        booster = cls.get_booster()
        dump = booster.get_dump(dump_format="json")
        assert len(dump) - booster.best_iteration == early_stopping_rounds + 1

    def test_early_stopping_save_best_model(self, breast_cancer: BreastCancer) -> None:
        X, y = breast_cancer.full
        n_estimators = 100
        early_stopping_rounds = 5
        early_stop = xgb.callback.EarlyStopping(
            rounds=early_stopping_rounds, save_best=True
        )
        cls = xgb.XGBClassifier(
            n_estimators=n_estimators,
            eval_metric=tm.eval_error_metric_skl,
            callbacks=[early_stop],
        )
        cls.fit(X, y, eval_set=[(X, y)])
        booster = cls.get_booster()
        dump = booster.get_dump(dump_format="json")
        assert len(dump) == booster.best_iteration + 1

        early_stop = xgb.callback.EarlyStopping(
            rounds=early_stopping_rounds, save_best=True
        )
        cls = xgb.XGBClassifier(
            booster="gblinear",
            n_estimators=10,
            eval_metric=tm.eval_error_metric_skl,
            callbacks=[early_stop],
        )
        with pytest.raises(ValueError):
            cls.fit(X, y, eval_set=[(X, y)])

        # No error
        early_stop = xgb.callback.EarlyStopping(
            rounds=early_stopping_rounds, save_best=False
        )
        xgb.XGBClassifier(
            booster="gblinear",
            n_estimators=10,
            eval_metric=tm.eval_error_metric_skl,
            callbacks=[early_stop],
        ).fit(X, y, eval_set=[(X, y)])

    def test_early_stopping_continuation(self, breast_cancer: BreastCancer) -> None:
        X, y = breast_cancer.full

        early_stopping_rounds = 5
        early_stop = xgb.callback.EarlyStopping(
            rounds=early_stopping_rounds, save_best=True
        )
        cls = xgb.XGBClassifier(
            eval_metric=tm.eval_error_metric_skl, callbacks=[early_stop]
        )
        cls.fit(X, y, eval_set=[(X, y)])

        booster = cls.get_booster()
        assert booster.num_boosted_rounds() == booster.best_iteration + 1

        with tempfile.TemporaryDirectory() as tmpdir:
            path = os.path.join(tmpdir, "model.json")
            cls.save_model(path)
            cls = xgb.XGBClassifier()
            cls.load_model(path)
            assert cls._Booster is not None
            early_stopping_rounds = 3
            cls.set_params(
                eval_metric=tm.eval_error_metric_skl,
                early_stopping_rounds=early_stopping_rounds,
            )
            cls.fit(X, y, eval_set=[(X, y)])
            booster = cls.get_booster()
            assert (
                booster.num_boosted_rounds()
                == booster.best_iteration + early_stopping_rounds + 1
            )

    def test_early_stopping_multiple_metrics(self):
        from sklearn.datasets import make_classification

        X, y = make_classification(random_state=1994)
        # AUC approaches 1.0 real quick.
        clf = xgb.XGBClassifier(eval_metric=["logloss", "auc"], early_stopping_rounds=2)
        clf.fit(X, y, eval_set=[(X, y)])
        assert clf.best_iteration < 8
        assert clf.evals_result()["validation_0"]["auc"][-1] > 0.99

        clf = xgb.XGBClassifier(eval_metric=["auc", "logloss"], early_stopping_rounds=2)
        clf.fit(X, y, eval_set=[(X, y)])

        assert clf.best_iteration > 50
        assert clf.evals_result()["validation_0"]["auc"][-1] > 0.99

    def run_eta_decay(self, tree_method: str) -> None:
        """Test learning rate scheduler, used by both CPU and GPU tests."""
        scheduler = xgb.callback.LearningRateScheduler

        dtrain, dtest = tm.load_agaricus(__file__)

        watchlist = [(dtest, "eval"), (dtrain, "train")]
        num_round = 4

        # learning_rates as a list
        # init eta with 0 to check whether learning_rates work
        param = {
            "max_depth": 2,
            "eta": 0,
            "objective": "binary:logistic",
            "eval_metric": "error",
            "tree_method": tree_method,
        }
        evals_result = {}
        bst = xgb.train(
            param,
            dtrain,
            num_round,
            evals=watchlist,
            callbacks=[scheduler([0.8, 0.7, 0.6, 0.5])],
            evals_result=evals_result,
        )
        eval_errors_0 = list(map(float, evals_result["eval"]["error"]))
        assert isinstance(bst, xgb.core.Booster)
        # validation error should decrease, if eta > 0
        assert eval_errors_0[0] > eval_errors_0[-1]

        # init learning_rate with 0 to check whether learning_rates work
        param = {
            "max_depth": 2,
            "learning_rate": 0,
            "objective": "binary:logistic",
            "eval_metric": "error",
            "tree_method": tree_method,
        }
        evals_result = {}

        bst = xgb.train(
            param,
            dtrain,
            num_round,
            evals=watchlist,
            callbacks=[scheduler([0.8, 0.7, 0.6, 0.5])],
            evals_result=evals_result,
        )
        eval_errors_1 = list(map(float, evals_result["eval"]["error"]))
        assert isinstance(bst, xgb.core.Booster)
        # validation error should decrease, if learning_rate > 0
        assert eval_errors_1[0] > eval_errors_1[-1]

        # check if learning_rates override default value of eta/learning_rate
        param = {
            "max_depth": 2,
            "objective": "binary:logistic",
            "eval_metric": "error",
            "tree_method": tree_method,
        }
        evals_result = {}
        bst = xgb.train(
            param,
            dtrain,
            num_round,
            evals=watchlist,
            callbacks=[scheduler([0, 0, 0, 0])],
            evals_result=evals_result,
        )
        eval_errors_2 = list(map(float, evals_result["eval"]["error"]))
        assert isinstance(bst, xgb.core.Booster)
        # validation error should not decrease, if eta/learning_rate = 0
        assert eval_errors_2[0] == eval_errors_2[-1]

        # learning_rates as a customized decay function
        def eta_decay(ithround, num_boost_round=num_round):
            return num_boost_round / (ithround + 1)

        evals_result = {}
        bst = xgb.train(
            param,
            dtrain,
            num_round,
            evals=watchlist,
            callbacks=[scheduler(eta_decay)],
            evals_result=evals_result,
        )
        eval_errors_3 = list(map(float, evals_result["eval"]["error"]))

        assert isinstance(bst, xgb.core.Booster)

        assert eval_errors_3[0] == eval_errors_2[0]

        for i in range(1, len(eval_errors_0)):
            assert eval_errors_3[i] != eval_errors_2[i]

        xgb.cv(param, dtrain, num_round, callbacks=[scheduler(eta_decay)])

    def run_eta_decay_leaf_output(self, tree_method: str, objective: str) -> None:
        # check decay has effect on leaf output.
        num_round = 4
        scheduler = xgb.callback.LearningRateScheduler

        dtrain, dtest = tm.load_agaricus(__file__)
        watchlist = [(dtest, "eval"), (dtrain, "train")]

        param = {
            "max_depth": 2,
            "objective": objective,
            "eval_metric": "error",
            "tree_method": tree_method,
        }
        if objective == "reg:quantileerror":
            param["quantile_alpha"] = 0.3

        def eta_decay_0(i):
            return num_round / (i + 1)

        bst0 = xgb.train(
            param,
            dtrain,
            num_round,
            evals=watchlist,
            callbacks=[scheduler(eta_decay_0)],
        )

        def eta_decay_1(i: int) -> float:
            if i > 1:
                return 5.0
            return num_round / (i + 1)

        bst1 = xgb.train(
            param,
            dtrain,
            num_round,
            evals=watchlist,
            callbacks=[scheduler(eta_decay_1)],
        )
        bst_json0 = bst0.save_raw(raw_format="json")
        bst_json1 = bst1.save_raw(raw_format="json")

        j0 = json.loads(bst_json0)
        j1 = json.loads(bst_json1)

        tree_2th_0 = j0["learner"]["gradient_booster"]["model"]["trees"][2]
        tree_2th_1 = j1["learner"]["gradient_booster"]["model"]["trees"][2]
        assert tree_2th_0["base_weights"] == tree_2th_1["base_weights"]
        assert tree_2th_0["split_conditions"] == tree_2th_1["split_conditions"]

        tree_3th_0 = j0["learner"]["gradient_booster"]["model"]["trees"][3]
        tree_3th_1 = j1["learner"]["gradient_booster"]["model"]["trees"][3]
        assert tree_3th_0["base_weights"] != tree_3th_1["base_weights"]
        assert tree_3th_0["split_conditions"] != tree_3th_1["split_conditions"]

    @pytest.mark.parametrize("tree_method", ["hist", "approx", "approx"])
    def test_eta_decay(self, tree_method: str) -> None:
        self.run_eta_decay(tree_method)

    @pytest.mark.parametrize(
        "tree_method,objective",
        [
            ("hist", "binary:logistic"),
            ("hist", "reg:absoluteerror"),
            ("hist", "reg:quantileerror"),
            ("approx", "binary:logistic"),
            ("approx", "reg:absoluteerror"),
            ("approx", "reg:quantileerror"),
        ],
    )
    def test_eta_decay_leaf_output(self, tree_method: str, objective: str) -> None:
        self.run_eta_decay_leaf_output(tree_method, objective)

    def test_check_point(self, breast_cancer: BreastCancer) -> None:
        X, y = breast_cancer.full
        m = xgb.DMatrix(X, y)
        with tempfile.TemporaryDirectory() as tmpdir:
            check_point = xgb.callback.TrainingCheckPoint(
                directory=tmpdir, interval=1, name="model"
            )
            xgb.train(
                {"objective": "binary:logistic"},
                m,
                num_boost_round=10,
                verbose_eval=False,
                callbacks=[check_point],
            )
            for i in range(1, 10):
                assert os.path.exists(
                    os.path.join(
                        tmpdir,
                        f"model_{i}.{xgb.callback.TrainingCheckPoint.default_format}",
                    )
                )

            check_point = xgb.callback.TrainingCheckPoint(
                directory=tmpdir, interval=1, as_pickle=True, name="model"
            )
            xgb.train(
                {"objective": "binary:logistic"},
                m,
                num_boost_round=10,
                verbose_eval=False,
                callbacks=[check_point],
            )
            for i in range(1, 10):
                assert os.path.exists(os.path.join(tmpdir, "model_" + str(i) + ".pkl"))

    def test_callback_list(self) -> None:
        X, y = tm.data.get_california_housing()
        m = xgb.DMatrix(X, y)
        callbacks = [xgb.callback.EarlyStopping(rounds=10)]
        for i in range(4):
            xgb.train(
                {"objective": "reg:squarederror", "eval_metric": "rmse"},
                m,
                evals=[(m, "Train")],
                num_boost_round=1,
                verbose_eval=True,
                callbacks=callbacks,
            )
        assert len(callbacks) == 1

    def test_attribute_error(self, breast_cancer: BreastCancer) -> None:
        X, y = breast_cancer.full

        clf = xgb.XGBClassifier(n_estimators=8)
        clf.fit(X, y, eval_set=[(X, y)])

        with pytest.raises(AttributeError, match="early stopping is used"):
            clf.best_iteration

        with pytest.raises(AttributeError, match="early stopping is used"):
            clf.best_score

        booster = clf.get_booster()
        with pytest.raises(AttributeError, match="early stopping is used"):
            booster.best_iteration

        with pytest.raises(AttributeError, match="early stopping is used"):
            booster.best_score