1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
|
import os
import tempfile
import weakref
from typing import Any, Callable, Dict, List
import numpy as np
import pytest
from hypothesis import given, settings, strategies
from scipy.sparse import csr_matrix
import xgboost as xgb
from xgboost import testing as tm
from xgboost.data import SingleBatchInternalIter as SingleBatch
from xgboost.testing import IteratorForTest, make_batches, non_increasing
from xgboost.testing.data_iter import check_invalid_cat_batches, check_uneven_sizes
from xgboost.testing.updater import (
check_categorical_missing,
check_categorical_ohe,
check_extmem_qdm,
check_quantile_loss_extmem,
)
pytestmark = tm.timeout(30)
def test_single_batch(tree_method: str = "approx", device: str = "cpu") -> None:
from sklearn.datasets import load_breast_cancer
n_rounds = 10
X, y = load_breast_cancer(return_X_y=True)
X = X.astype(np.float32)
y = y.astype(np.float32)
params = {"tree_method": tree_method, "device": device}
Xy = xgb.DMatrix(SingleBatch(data=X, label=y))
from_it = xgb.train(params, Xy, num_boost_round=n_rounds)
Xy = xgb.DMatrix(X, y)
from_dmat = xgb.train(params, Xy, num_boost_round=n_rounds)
assert from_it.get_dump() == from_dmat.get_dump()
X, y = load_breast_cancer(return_X_y=True, as_frame=True)
X = X.astype(np.float32)
Xy = xgb.DMatrix(SingleBatch(data=X, label=y))
from_pd = xgb.train(params, Xy, num_boost_round=n_rounds)
# remove feature info to generate exact same text representation.
from_pd.feature_names = None
from_pd.feature_types = None
assert from_pd.get_dump() == from_it.get_dump()
X, y = load_breast_cancer(return_X_y=True)
X = csr_matrix(X)
Xy = xgb.DMatrix(SingleBatch(data=X, label=y))
from_it = xgb.train(params, Xy, num_boost_round=n_rounds)
X, y = load_breast_cancer(return_X_y=True)
Xy = xgb.DMatrix(SingleBatch(data=X, label=y), missing=0.0)
from_np = xgb.train(params, Xy, num_boost_round=n_rounds)
assert from_np.get_dump() == from_it.get_dump()
def test_with_cat_single() -> None:
X, y = tm.make_categorical(
n_samples=128, n_features=3, n_categories=6, onehot=False
)
Xy = xgb.DMatrix(SingleBatch(data=X, label=y), enable_categorical=True)
from_it = xgb.train({}, Xy, num_boost_round=3)
Xy = xgb.DMatrix(X, y, enable_categorical=True)
from_Xy = xgb.train({}, Xy, num_boost_round=3)
jit = from_it.save_raw(raw_format="json")
jxy = from_Xy.save_raw(raw_format="json")
assert jit == jxy
def run_data_iterator(
n_samples_per_batch: int,
n_features: int,
n_batches: int,
tree_method: str,
subsample: bool,
device: str,
use_cupy: bool,
on_host: bool,
) -> None:
n_rounds = 2
# The test is more difficult to pass if the subsample rate is smaller as the root_sum
# is accumulated in parallel. Reductions with different number of entries lead to
# different floating point errors.
subsample_rate = 0.8 if subsample else 1.0
it = IteratorForTest(
*make_batches(n_samples_per_batch, n_features, n_batches, use_cupy),
cache="cache",
on_host=on_host,
)
if n_batches == 0:
with pytest.raises(ValueError, match="1 batch"):
Xy = xgb.DMatrix(it)
return
Xy = xgb.DMatrix(it)
assert Xy.num_row() == n_samples_per_batch * n_batches
assert Xy.num_col() == n_features
parameters = {
"tree_method": tree_method,
"max_depth": 2,
"subsample": subsample_rate,
"device": device,
"seed": 0,
}
if device.find("cuda") != -1:
parameters["sampling_method"] = "gradient_based"
results_from_it: Dict[str, Dict[str, List[float]]] = {}
from_it = xgb.train(
parameters,
Xy,
num_boost_round=n_rounds,
evals=[(Xy, "Train")],
evals_result=results_from_it,
verbose_eval=False,
)
if not subsample:
assert non_increasing(results_from_it["Train"]["rmse"])
X, y, w = it.as_arrays()
if use_cupy:
_y = y.get()
else:
_y = y
np.testing.assert_allclose(Xy.get_label(), _y)
Xy = xgb.DMatrix(X, y, weight=w)
assert Xy.num_row() == n_samples_per_batch * n_batches
assert Xy.num_col() == n_features
results_from_arrays: Dict[str, Dict[str, List[float]]] = {}
from_arrays = xgb.train(
parameters,
Xy,
num_boost_round=n_rounds,
evals=[(Xy, "Train")],
evals_result=results_from_arrays,
verbose_eval=False,
)
arr_predt = from_arrays.predict(Xy)
if not subsample:
assert non_increasing(results_from_arrays["Train"]["rmse"])
rtol = 1e-2
# CPU sketching is more memory efficient but less consistent due to small chunks
it_predt = from_it.predict(Xy)
arr_predt = from_arrays.predict(Xy)
np.testing.assert_allclose(it_predt, arr_predt, rtol=rtol)
np.testing.assert_allclose(
results_from_it["Train"]["rmse"],
results_from_arrays["Train"]["rmse"],
rtol=rtol,
)
@given(
strategies.integers(0, 1024),
strategies.integers(1, 7),
strategies.integers(0, 13),
strategies.booleans(),
)
@settings(deadline=None, max_examples=10, print_blob=True)
def test_data_iterator(
n_samples_per_batch: int,
n_features: int,
n_batches: int,
subsample: bool,
) -> None:
run_data_iterator(
n_samples_per_batch,
n_features,
n_batches,
"approx",
subsample,
"cpu",
False,
False,
)
run_data_iterator(
n_samples_per_batch,
n_features,
n_batches,
"hist",
subsample,
"cpu",
False,
False,
)
class IterForCacheTest(xgb.DataIter):
def __init__(
self, x: np.ndarray, y: np.ndarray, w: np.ndarray, release_data: bool
) -> None:
self.kwargs = {"data": x, "label": y, "weight": w}
super().__init__(release_data=release_data)
def next(self, input_data: Callable) -> bool:
if self.it == 1:
return False
self.it += 1
input_data(**self.kwargs)
return True
def reset(self) -> None:
self.it = 0
def test_data_cache() -> None:
n_batches = 1
n_features = 2
n_samples_per_batch = 16
data = make_batches(n_samples_per_batch, n_features, n_batches, False)
batches = [v[0] for v in data]
# Test with a cache.
it = IterForCacheTest(batches[0], batches[1], batches[2], release_data=False)
transform = xgb.data._proxy_transform
called = 0
def mock(*args: Any, **kwargs: Any) -> Any:
nonlocal called
called += 1
return transform(*args, **kwargs)
xgb.data._proxy_transform = mock
xgb.QuantileDMatrix(it)
assert it._data_ref is weakref.ref(batches[0])
assert called == 1
# Test without a cache.
called = 0
it = IterForCacheTest(batches[0], batches[1], batches[2], release_data=True)
xgb.QuantileDMatrix(it)
assert called == 4
xgb.data._proxy_transform = transform
def test_cat_check() -> None:
n_batches = 3
n_features = 2
n_samples_per_batch = 16
batches = []
for i in range(n_batches):
X_df, y_arr = tm.make_categorical(
n_samples=n_samples_per_batch,
n_features=n_features,
n_categories=3,
onehot=False,
)
batches.append((X_df, y_arr))
X, y = list(zip(*batches))
it = tm.IteratorForTest(X, y, None, cache=None, on_host=False)
Xy: xgb.DMatrix = xgb.QuantileDMatrix(it, enable_categorical=True)
with pytest.raises(ValueError, match="categorical features"):
xgb.train({"tree_method": "exact"}, Xy)
Xy = xgb.DMatrix(X[0], y[0], enable_categorical=True)
with pytest.raises(ValueError, match="categorical features"):
xgb.train({"tree_method": "exact"}, Xy)
with tempfile.TemporaryDirectory() as tmpdir:
cache_path = os.path.join(tmpdir, "cache")
it = tm.IteratorForTest(X, y, None, cache=cache_path, on_host=False)
Xy = xgb.DMatrix(it, enable_categorical=True)
with pytest.raises(ValueError, match="categorical features"):
xgb.train({"booster": "gblinear"}, Xy)
@given(
strategies.integers(1, 64),
strategies.integers(1, 8),
strategies.integers(1, 4),
)
@settings(deadline=None, max_examples=10, print_blob=True)
def test_quantile_objective(
n_samples_per_batch: int, n_features: int, n_batches: int
) -> None:
check_quantile_loss_extmem(
n_samples_per_batch,
n_features,
n_batches,
"hist",
"cpu",
)
check_quantile_loss_extmem(
n_samples_per_batch,
n_features,
n_batches,
"approx",
"cpu",
)
@given(
strategies.integers(1, 4096),
strategies.integers(1, 8),
strategies.integers(1, 4),
strategies.integers(2, 16),
)
@settings(deadline=None, max_examples=10, print_blob=True)
def test_extmem_qdm(
n_samples_per_batch: int, n_features: int, n_batches: int, n_bins: int
) -> None:
check_extmem_qdm(
n_samples_per_batch,
n_features,
n_batches=n_batches,
n_bins=n_bins,
device="cpu",
on_host=False,
is_cat=False,
)
@given(
strategies.integers(1, 4096),
strategies.integers(1, 4),
strategies.integers(2, 16),
)
@settings(deadline=None, max_examples=10, print_blob=True)
def test_categorical_extmem_qdm(
n_samples_per_batch: int, n_batches: int, n_bins: int
) -> None:
check_extmem_qdm(
n_samples_per_batch,
4,
n_batches=n_batches,
n_bins=n_bins,
device="cpu",
on_host=False,
is_cat=True,
)
@pytest.mark.parametrize("tree_method", ["hist", "approx"])
def test_categorical_missing(tree_method: str) -> None:
check_categorical_missing(
1024, 4, 5, device="cpu", tree_method=tree_method, extmem=True
)
@pytest.mark.parametrize("tree_method", ["hist", "approx"])
def test_categorical_ohe(tree_method: str) -> None:
check_categorical_ohe(
rows=1024,
cols=16,
rounds=4,
cats=5,
device="cpu",
tree_method=tree_method,
extmem=True,
)
def test_invalid_cat_batches() -> None:
check_invalid_cat_batches("cpu")
@pytest.mark.skipif(**tm.no_cupy())
def test_uneven_sizes() -> None:
check_uneven_sizes("cpu")
|