1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
from typing import Tuple
import numpy as np
import pytest
import xgboost as xgb
from xgboost import testing as tm
from xgboost.testing.updater import get_basescore
rng = np.random.RandomState(1994)
class TestEarlyStopping:
@pytest.mark.skipif(**tm.no_sklearn())
def test_early_stopping_nonparallel(self):
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
X, y = load_digits(n_class=2, return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
clf1 = xgb.XGBClassifier(
learning_rate=0.1, early_stopping_rounds=5, eval_metric="auc"
)
clf1.fit(X_train, y_train, eval_set=[(X_test, y_test)])
clf2 = xgb.XGBClassifier(
learning_rate=0.1, early_stopping_rounds=4, eval_metric="auc"
)
clf2.fit(X_train, y_train, eval_set=[(X_test, y_test)])
# should be the same
assert clf1.best_score == clf2.best_score
assert clf1.best_score != 1
# check overfit
clf3 = xgb.XGBClassifier(
learning_rate=0.1, eval_metric="auc", early_stopping_rounds=10
)
clf3.fit(X_train, y_train, eval_set=[(X_test, y_test)])
base_score = get_basescore(clf3)
assert 0.53 > base_score > 0.5
clf3 = xgb.XGBClassifier(
learning_rate=0.1,
base_score=0.5,
eval_metric="auc",
early_stopping_rounds=10,
)
clf3.fit(X_train, y_train, eval_set=[(X_test, y_test)])
assert clf3.best_score == 1
@staticmethod
def assert_metrics_length(cv, expected_length):
for key, value in cv.items():
assert len(value) == expected_length
@pytest.mark.skipif(**tm.no_sklearn())
def test_cv_early_stopping(self) -> None:
from sklearn.datasets import load_digits
X, y = load_digits(n_class=2, return_X_y=True)
dm = xgb.DMatrix(X, label=y)
params = {
"max_depth": 2,
"eta": 1,
"objective": "binary:logistic",
"eval_metric": "error",
}
def evalerror(preds: np.ndarray, dtrain: xgb.DMatrix) -> Tuple[str, float]:
from sklearn.metrics import mean_squared_error
labels = dtrain.get_label()
return "rmse", mean_squared_error(labels, preds)
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, early_stopping_rounds=10)
self.assert_metrics_length(cv, 10)
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, early_stopping_rounds=5)
self.assert_metrics_length(cv, 3)
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, early_stopping_rounds=1)
self.assert_metrics_length(cv, 1)
cv = xgb.cv(
params,
dm,
num_boost_round=10,
nfold=10,
custom_metric=evalerror,
early_stopping_rounds=10,
)
self.assert_metrics_length(cv, 10)
cv = xgb.cv(
params,
dm,
num_boost_round=10,
nfold=10,
custom_metric=evalerror,
early_stopping_rounds=1,
)
self.assert_metrics_length(cv, 5)
cv = xgb.cv(
params,
dm,
num_boost_round=10,
nfold=10,
custom_metric=evalerror,
maximize=True,
early_stopping_rounds=1,
)
self.assert_metrics_length(cv, 1)
with pytest.raises(ValueError, match="`save_best`"):
cv = xgb.cv(
params,
dm,
num_boost_round=10,
nfold=10,
early_stopping_rounds=1,
callbacks=[xgb.callback.EarlyStopping(3, save_best=True)],
)
@pytest.mark.skipif(**tm.no_sklearn())
@pytest.mark.skipif(**tm.no_pandas())
def test_cv_early_stopping_with_multiple_eval_sets_and_metrics(self):
from sklearn.datasets import load_breast_cancer
X, y = load_breast_cancer(return_X_y=True)
dm = xgb.DMatrix(X, label=y)
params = {"objective": "binary:logistic"}
metrics = [
["auc"],
["error"],
["logloss"],
["logloss", "auc"],
["logloss", "error"],
["error", "logloss"],
]
num_iteration_history = []
# If more than one metrics is given, early stopping should use the last metric
for i, m in enumerate(metrics):
result = xgb.cv(
params,
dm,
num_boost_round=1000,
nfold=5,
stratified=True,
metrics=m,
early_stopping_rounds=20,
seed=42,
)
num_iteration_history.append(len(result))
df = result["test-{}-mean".format(m[-1])]
# When early stopping is invoked, the last metric should be as best it can be.
if m[-1] == "auc":
assert np.all(df <= df.iloc[-1])
else:
assert np.all(df >= df.iloc[-1])
assert num_iteration_history[:3] == num_iteration_history[3:]
|