File: test_linear.py

package info (click to toggle)
xgboost 3.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 13,796 kB
  • sloc: cpp: 67,502; python: 35,503; java: 4,676; ansic: 1,426; sh: 1,320; xml: 1,197; makefile: 204; javascript: 19
file content (106 lines) | stat: -rw-r--r-- 3,720 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
from hypothesis import given, note, settings, strategies

import xgboost as xgb
from xgboost import testing as tm

pytestmark = tm.timeout(20)


parameter_strategy = strategies.fixed_dictionaries({
    'booster': strategies.just('gblinear'),
    'eta': strategies.floats(0.01, 0.25),
    'tolerance': strategies.floats(1e-5, 1e-2),
    'nthread': strategies.integers(1, 4),
})

coord_strategy = strategies.fixed_dictionaries({
    'feature_selector': strategies.sampled_from(['cyclic', 'shuffle',
                                                 'greedy', 'thrifty']),
    'top_k': strategies.integers(1, 10),
})


def train_result(param, dmat, num_rounds):
    result = {}
    xgb.train(
        param,
        dmat,
        num_rounds,
        evals=[(dmat, "train")],
        verbose_eval=False,
        evals_result=result,
    )
    return result


class TestLinear:
    @given(
        parameter_strategy,
        strategies.integers(10, 50),
        tm.make_dataset_strategy(),
        coord_strategy
    )
    @settings(deadline=None, max_examples=20, print_blob=True)
    def test_coordinate(self, param, num_rounds, dataset, coord_param):
        param['updater'] = 'coord_descent'
        param.update(coord_param)
        param = dataset.set_params(param)
        result = train_result(param, dataset.get_dmat(), num_rounds)['train'][dataset.metric]
        note(result)
        assert tm.non_increasing(result, 5e-4)

    # Loss is not guaranteed to always decrease because of regularisation parameters
    # We test a weaker condition that the loss has not increased between the first and last
    # iteration
    @given(
        parameter_strategy,
        strategies.integers(10, 50),
        tm.make_dataset_strategy(),
        coord_strategy,
        strategies.floats(1e-5, 0.8),
        strategies.floats(1e-5, 0.8)
    )
    @settings(deadline=None, max_examples=20, print_blob=True)
    def test_coordinate_regularised(self, param, num_rounds, dataset, coord_param, alpha, lambd):
        param['updater'] = 'coord_descent'
        param['alpha'] = alpha
        param['lambda'] = lambd
        param.update(coord_param)
        param = dataset.set_params(param)
        result = train_result(param, dataset.get_dmat(), num_rounds)['train'][dataset.metric]
        note(result)
        assert tm.non_increasing([result[0], result[-1]])

    @given(
        parameter_strategy, strategies.integers(10, 50), tm.make_dataset_strategy()
    )
    @settings(deadline=None, max_examples=20, print_blob=True)
    def test_shotgun(self, param, num_rounds, dataset):
        param['updater'] = 'shotgun'
        param = dataset.set_params(param)
        result = train_result(param, dataset.get_dmat(), num_rounds)['train'][dataset.metric]
        note(result)
        # shotgun is non-deterministic, so we relax the test by only using first and last
        # iteration.
        if len(result) > 2:
            sampled_result = (result[0], result[-1])
        else:
            sampled_result = result
        assert tm.non_increasing(sampled_result)

    @given(
        parameter_strategy,
        strategies.integers(10, 50),
        tm.make_dataset_strategy(),
        strategies.floats(1e-5, 1.0),
        strategies.floats(1e-5, 1.0)
    )
    @settings(deadline=None, max_examples=20, print_blob=True)
    def test_shotgun_regularised(self, param, num_rounds, dataset, alpha, lambd):
        param['updater'] = 'shotgun'
        param['alpha'] = alpha
        param['lambda'] = lambd
        param = dataset.set_params(param)
        result = train_result(param, dataset.get_dmat(), num_rounds)['train'][dataset.metric]
        note(result)
        assert tm.non_increasing([result[0], result[-1]])