File: test_model_compatibility.py

package info (click to toggle)
xgboost 3.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 13,796 kB
  • sloc: cpp: 67,502; python: 35,503; java: 4,676; ansic: 1,426; sh: 1,320; xml: 1,197; makefile: 204; javascript: 19
file content (140 lines) | stat: -rw-r--r-- 5,321 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import copy
import json
import os
import urllib.request
import zipfile

import generate_models as gm
import pytest

import xgboost
from xgboost import testing as tm


def run_model_param_check(config):
    assert config['learner']['learner_model_param']['num_feature'] == str(4)
    assert config['learner']['learner_train_param']['booster'] == 'gbtree'


def run_booster_check(booster, name):
    config = json.loads(booster.save_config())
    run_model_param_check(config)
    if name.find('cls') != -1:
        assert (len(booster.get_dump()) == gm.kForests * gm.kRounds *
                gm.kClasses)
        assert float(
            config['learner']['learner_model_param']['base_score']) == 0.5
        assert config['learner']['learner_train_param'][
            'objective'] == 'multi:softmax'
    elif name.find('logitraw') != -1:
        assert len(booster.get_dump()) == gm.kForests * gm.kRounds
        assert config['learner']['learner_model_param']['num_class'] == str(0)
        assert config['learner']['learner_train_param']['objective'] == 'binary:logitraw'
    elif name.find('logit') != -1:
        assert len(booster.get_dump()) == gm.kForests * gm.kRounds
        assert config['learner']['learner_model_param']['num_class'] == str(0)
        assert config['learner']['learner_train_param'][
            'objective'] == 'binary:logistic'
    elif name.find('ltr') != -1:
        assert config['learner']['learner_train_param'][
            'objective'] == 'rank:ndcg'
    else:
        assert name.find('reg') != -1
        assert len(booster.get_dump()) == gm.kForests * gm.kRounds
        assert float(
            config['learner']['learner_model_param']['base_score']) == 0.5
        assert config['learner']['learner_train_param'][
            'objective'] == 'reg:squarederror'


def run_scikit_model_check(name, path):
    if name.find('reg') != -1:
        reg = xgboost.XGBRegressor()
        reg.load_model(path)
        config = json.loads(reg.get_booster().save_config())
        if name.find('0.90') != -1:
            assert config['learner']['learner_train_param'][
                'objective'] == 'reg:linear'
        else:
            assert config['learner']['learner_train_param'][
                'objective'] == 'reg:squarederror'
        assert (len(reg.get_booster().get_dump()) ==
                gm.kRounds * gm.kForests)
        run_model_param_check(config)
    elif name.find('cls') != -1:
        cls = xgboost.XGBClassifier()
        cls.load_model(path)
        if name.find('0.90') == -1:
            assert len(cls.classes_) == gm.kClasses
            assert cls.n_classes_ == gm.kClasses
        assert (len(cls.get_booster().get_dump()) ==
                gm.kRounds * gm.kForests * gm.kClasses), path
        config = json.loads(cls.get_booster().save_config())
        assert config['learner']['learner_train_param'][
            'objective'] == 'multi:softprob', path
        run_model_param_check(config)
    elif name.find('ltr') != -1:
        ltr = xgboost.XGBRanker()
        ltr.load_model(path)
        assert (len(ltr.get_booster().get_dump()) ==
                gm.kRounds * gm.kForests)
        config = json.loads(ltr.get_booster().save_config())
        assert config['learner']['learner_train_param'][
            'objective'] == 'rank:ndcg'
        run_model_param_check(config)
    elif name.find('logitraw') != -1:
        logit = xgboost.XGBClassifier()
        logit.load_model(path)
        assert (len(logit.get_booster().get_dump()) ==
                gm.kRounds * gm.kForests)
        config = json.loads(logit.get_booster().save_config())
        assert config['learner']['learner_train_param']['objective'] == 'binary:logitraw'
    elif name.find('logit') != -1:
        logit = xgboost.XGBClassifier()
        logit.load_model(path)
        assert (len(logit.get_booster().get_dump()) ==
                gm.kRounds * gm.kForests)
        config = json.loads(logit.get_booster().save_config())
        assert config['learner']['learner_train_param'][
            'objective'] == 'binary:logistic'
    else:
        assert False


@pytest.mark.skipif(**tm.no_sklearn())
def test_model_compatibility():
    """Test model compatibility, can only be run on CI as others don't
    have the credentials.

    """
    path = os.path.dirname(os.path.abspath(__file__))
    path = os.path.join(path, "models")

    if not os.path.exists(path):
        zip_path, _ = urllib.request.urlretrieve(
            "https://xgboost-ci-jenkins-artifacts.s3-us-west-2"
            + ".amazonaws.com/xgboost_model_compatibility_test.zip"
        )
        with zipfile.ZipFile(zip_path, "r") as z:
            z.extractall(path)

    models = [
        os.path.join(root, f)
        for root, subdir, files in os.walk(path)
        for f in files
        if f != "version"
    ]
    assert models

    for path in models:
        name = os.path.basename(path)
        if name.startswith("xgboost-"):
            booster = xgboost.Booster(model_file=path)
            run_booster_check(booster, name)
            # Do full serialization.
            booster = copy.copy(booster)
            run_booster_check(booster, name)
        elif name.startswith("xgboost_scikit"):
            run_scikit_model_check(name, path)
        else:
            assert False