1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
|
import re
from functools import partial, update_wrapper
from platform import system
from typing import Dict, Union
import numpy as np
import pytest
from hypothesis import HealthCheck, given, settings, strategies
from xgboost import RabitTracker, collective
from xgboost import testing as tm
def test_rabit_tracker() -> None:
tracker = RabitTracker(host_ip="127.0.0.1", n_workers=1)
tracker.start()
args = tracker.worker_args()
port = args["dmlc_tracker_port"]
with collective.CommunicatorContext(**tracker.worker_args()):
ret = collective.broadcast("test1234", 0)
assert str(ret) == "test1234"
if system() == "Windows":
pytest.skip("Windows is not supported.")
with pytest.raises(ValueError, match="Failed to bind socket"):
# Port is already being used
RabitTracker(host_ip="127.0.0.1", port=port, n_workers=1)
@pytest.mark.skipif(**tm.not_linux())
def test_wait() -> None:
tracker = RabitTracker(host_ip="127.0.0.1", n_workers=2)
tracker.start()
with pytest.raises(ValueError, match="Timeout waiting for the tracker"):
tracker.wait_for(1)
with pytest.raises(ValueError, match="Failed to accept"):
tracker.free()
@pytest.mark.skipif(**tm.not_linux())
def test_socket_error() -> None:
tracker = RabitTracker(host_ip="127.0.0.1", n_workers=2)
tracker.start()
env = tracker.worker_args()
env["dmlc_tracker_port"] = 0
env["dmlc_retry"] = 1
with pytest.raises(ValueError, match="Failed to bootstrap the communication."):
with collective.CommunicatorContext(**env):
pass
with pytest.raises(ValueError):
tracker.free()
def run_rabit_ops(pool, n_workers: int, address: str) -> None:
tracker = RabitTracker(host_ip=address, n_workers=n_workers)
tracker.start()
args = tracker.worker_args()
def local_test(worker_id: int, rabit_args: dict) -> int:
with collective.CommunicatorContext(**rabit_args):
a = 1
assert collective.is_distributed()
arr = np.array([a])
reduced = collective.allreduce(arr, collective.Op.SUM)
assert reduced[0] == n_workers
arr = np.array([worker_id])
reduced = collective.allreduce(arr, collective.Op.MAX)
assert reduced == n_workers - 1
return 1
fn = update_wrapper(partial(local_test, rabit_args=args), local_test)
results = pool.map(fn, range(n_workers))
assert sum(results) == n_workers
@pytest.mark.skipif(**tm.no_loky())
def test_rabit_ops():
from loky import get_reusable_executor
n_workers = 4
with get_reusable_executor(max_workers=n_workers) as pool:
run_rabit_ops(pool, n_workers, "127.0.0.1")
@pytest.mark.skipif(**tm.no_ipv6())
@pytest.mark.skipif(**tm.no_loky())
def test_rabit_ops_ipv6():
from loky import get_reusable_executor
n_workers = 4
with get_reusable_executor(max_workers=n_workers) as pool:
run_rabit_ops(pool, n_workers, "::1")
def run_allreduce(pool, n_workers: int) -> None:
tracker = RabitTracker(host_ip="127.0.0.1", n_workers=n_workers)
tracker.start()
args = tracker.worker_args()
def local_test(worker_id: int, rabit_args: Dict[str, Union[str, int]]) -> None:
x = np.full(shape=(1024 * 1024 * 32), fill_value=1.0)
with collective.CommunicatorContext(**rabit_args):
k = np.asarray([1.0])
for i in range(128):
m = collective.allreduce(k, collective.Op.SUM)
assert m == n_workers
y = collective.allreduce(x, collective.Op.SUM)
np.testing.assert_allclose(y, np.full_like(y, fill_value=float(n_workers)))
fn = update_wrapper(partial(local_test, rabit_args=args), local_test)
results = pool.map(fn, range(n_workers))
for r in results:
assert r is None
@pytest.mark.skipif(**tm.no_loky())
def test_allreduce() -> None:
from loky import get_reusable_executor
n_workers = 4
n_trials = 2
for _ in range(n_trials):
with get_reusable_executor(max_workers=n_workers) as pool:
run_allreduce(pool, n_workers)
def run_broadcast(pool, n_workers: int) -> None:
tracker = RabitTracker(host_ip="127.0.0.1", n_workers=n_workers)
tracker.start()
args = tracker.worker_args()
def local_test(worker_id: int, rabit_args: Dict[str, Union[str, int]]):
with collective.CommunicatorContext(**rabit_args):
res = collective.broadcast(17, 0)
return res
fn = update_wrapper(partial(local_test, rabit_args=args), local_test)
results = pool.map(fn, range(n_workers))
np.testing.assert_allclose(np.array(list(results)), 17)
@pytest.mark.skipif(**tm.no_loky())
def test_broadcast():
from loky import get_reusable_executor
n_workers = 4
n_trials = 2
for _ in range(n_trials):
with get_reusable_executor(max_workers=n_workers) as pool:
run_broadcast(pool, n_workers)
@pytest.mark.skipif(**tm.no_dask())
def test_rank_assignment() -> None:
from distributed import Client, LocalCluster
from xgboost import dask as dxgb
from xgboost.testing.dask import get_rabit_args
def local_test(worker_id):
with dxgb.CommunicatorContext(**args) as ctx:
task_id = ctx["DMLC_TASK_ID"]
matched = re.search(".*-([0-9]).*", task_id)
rank = collective.get_rank()
# As long as the number of workers is lesser than 10, rank and worker id
# should be the same
assert rank == int(matched.group(1))
with LocalCluster(n_workers=8) as cluster:
with Client(cluster) as client:
workers = tm.dask.get_client_workers(client)
args = get_rabit_args(client, len(workers))
futures = client.map(local_test, range(len(workers)), workers=workers)
client.gather(futures)
ops_strategy = strategies.lists(
strategies.sampled_from(["broadcast", "allreduce_max", "allreduce_sum"])
)
@pytest.mark.skipif(**tm.no_loky())
@given(ops=ops_strategy, size=strategies.integers(2**4, 2**16))
@settings(
deadline=None,
print_blob=True,
max_examples=10,
suppress_health_check=[HealthCheck.function_scoped_fixture],
)
def test_ops_restart_comm(ops, size) -> None:
from loky import get_reusable_executor
n_workers = 8
def local_test(w: int, rabit_args: Dict[str, Union[str, int]]) -> None:
a = np.arange(0, n_workers)
with collective.CommunicatorContext(**rabit_args):
for op in ops:
if op == "broadcast":
b = collective.broadcast(a, root=1)
np.testing.assert_allclose(b, a)
elif op == "allreduce_max":
b = collective.allreduce(a, collective.Op.MAX)
np.testing.assert_allclose(b, a)
elif op == "allreduce_sum":
b = collective.allreduce(a, collective.Op.SUM)
np.testing.assert_allclose(a * n_workers, b)
else:
raise ValueError()
with get_reusable_executor(max_workers=n_workers) as pool:
tracker = RabitTracker(host_ip="127.0.0.1", n_workers=n_workers)
tracker.start()
args = tracker.worker_args()
fn = update_wrapper(partial(local_test, rabit_args=args), local_test)
results = pool.map(fn, range(n_workers))
for r in results:
assert r is None
@pytest.mark.skipif(**tm.no_loky())
def test_ops_reuse_comm() -> None:
from loky import get_reusable_executor
rng = np.random.default_rng(1994)
n_examples = 10
ops = rng.choice(
["broadcast", "allreduce_sum", "allreduce_max"], size=n_examples
).tolist()
n_workers = 8
n_trials = 8
def local_test(w: int, rabit_args: Dict[str, Union[str, int]]) -> None:
a = np.arange(0, n_workers)
with collective.CommunicatorContext(**rabit_args):
for op in ops:
if op == "broadcast":
b = collective.broadcast(a, root=1)
assert np.allclose(b, a)
elif op == "allreduce_max":
c = np.full_like(a, collective.get_rank())
b = collective.allreduce(c, collective.Op.MAX)
assert np.allclose(b, n_workers - 1), b
elif op == "allreduce_sum":
b = collective.allreduce(a, collective.Op.SUM)
assert np.allclose(a * 8, b)
else:
raise ValueError()
with get_reusable_executor(max_workers=n_workers) as pool:
for _ in range(n_trials):
tracker = RabitTracker(host_ip="127.0.0.1", n_workers=n_workers)
tracker.start()
args = tracker.worker_args()
fn = update_wrapper(partial(local_test, rabit_args=args), local_test)
results = pool.map(fn, range(n_workers))
for r in results:
assert r is None
|