File: test_training_continuation.py

package info (click to toggle)
xgboost 3.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 13,796 kB
  • sloc: cpp: 67,502; python: 35,503; java: 4,676; ansic: 1,426; sh: 1,320; xml: 1,197; makefile: 204; javascript: 19
file content (166 lines) | stat: -rw-r--r-- 5,957 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import os
import tempfile

import numpy as np
import pytest

import xgboost as xgb
from xgboost import testing as tm
from xgboost.testing.continuation import run_training_continuation_model_output

rng = np.random.RandomState(1337)


class TestTrainingContinuation:
    num_parallel_tree = 3

    def generate_parameters(self):
        xgb_params_01_binary = {
            "nthread": 1,
        }

        xgb_params_02_binary = {
            "nthread": 1,
            "num_parallel_tree": self.num_parallel_tree,
        }

        xgb_params_03_binary = {
            "nthread": 1,
            "num_class": 5,
            "num_parallel_tree": self.num_parallel_tree,
        }

        return [xgb_params_01_binary, xgb_params_02_binary, xgb_params_03_binary]

    def run_training_continuation(self, xgb_params_01, xgb_params_02, xgb_params_03):
        from sklearn.datasets import load_digits
        from sklearn.metrics import mean_squared_error

        digits_2class = load_digits(n_class=2)
        digits_5class = load_digits(n_class=5)

        X_2class = digits_2class["data"]
        y_2class = digits_2class["target"]

        X_5class = digits_5class["data"]
        y_5class = digits_5class["target"]

        dtrain_2class = xgb.DMatrix(X_2class, label=y_2class)
        dtrain_5class = xgb.DMatrix(X_5class, label=y_5class)

        gbdt_01 = xgb.train(xgb_params_01, dtrain_2class, num_boost_round=10)
        ntrees_01 = len(gbdt_01.get_dump())
        assert ntrees_01 == 10

        gbdt_02 = xgb.train(xgb_params_01, dtrain_2class, num_boost_round=0)
        gbdt_02.save_model("xgb_tc.json")

        gbdt_02a = xgb.train(
            xgb_params_01, dtrain_2class, num_boost_round=10, xgb_model=gbdt_02
        )
        gbdt_02b = xgb.train(
            xgb_params_01, dtrain_2class, num_boost_round=10, xgb_model="xgb_tc.json"
        )
        ntrees_02a = len(gbdt_02a.get_dump())
        ntrees_02b = len(gbdt_02b.get_dump())
        assert ntrees_02a == 10
        assert ntrees_02b == 10

        res1 = mean_squared_error(y_2class, gbdt_01.predict(dtrain_2class))
        res2 = mean_squared_error(y_2class, gbdt_02a.predict(dtrain_2class))
        assert res1 == res2

        res1 = mean_squared_error(y_2class, gbdt_01.predict(dtrain_2class))
        res2 = mean_squared_error(y_2class, gbdt_02b.predict(dtrain_2class))
        assert res1 == res2

        gbdt_03 = xgb.train(xgb_params_01, dtrain_2class, num_boost_round=3)
        gbdt_03.save_model("xgb_tc.json")

        gbdt_03a = xgb.train(
            xgb_params_01, dtrain_2class, num_boost_round=7, xgb_model=gbdt_03
        )
        gbdt_03b = xgb.train(
            xgb_params_01, dtrain_2class, num_boost_round=7, xgb_model="xgb_tc.json"
        )
        ntrees_03a = len(gbdt_03a.get_dump())
        ntrees_03b = len(gbdt_03b.get_dump())
        assert ntrees_03a == 10
        assert ntrees_03b == 10

        os.remove("xgb_tc.json")

        res1 = mean_squared_error(y_2class, gbdt_03a.predict(dtrain_2class))
        res2 = mean_squared_error(y_2class, gbdt_03b.predict(dtrain_2class))
        assert res1 == res2

        gbdt_04 = xgb.train(xgb_params_02, dtrain_2class, num_boost_round=3)
        res1 = mean_squared_error(y_2class, gbdt_04.predict(dtrain_2class))
        res2 = mean_squared_error(
            y_2class,
            gbdt_04.predict(
                dtrain_2class, iteration_range=(0, gbdt_04.num_boosted_rounds())
            ),
        )
        assert res1 == res2

        gbdt_04 = xgb.train(
            xgb_params_02, dtrain_2class, num_boost_round=7, xgb_model=gbdt_04
        )
        res1 = mean_squared_error(y_2class, gbdt_04.predict(dtrain_2class))
        res2 = mean_squared_error(
            y_2class,
            gbdt_04.predict(
                dtrain_2class, iteration_range=(0, gbdt_04.num_boosted_rounds())
            ),
        )
        assert res1 == res2

        gbdt_05 = xgb.train(xgb_params_03, dtrain_5class, num_boost_round=7)
        gbdt_05 = xgb.train(
            xgb_params_03, dtrain_5class, num_boost_round=3, xgb_model=gbdt_05
        )

        res1 = gbdt_05.predict(dtrain_5class)
        res2 = gbdt_05.predict(
            dtrain_5class, iteration_range=(0, gbdt_05.num_boosted_rounds())
        )
        np.testing.assert_almost_equal(res1, res2)

    @pytest.mark.skipif(**tm.no_sklearn())
    def test_training_continuation_json(self):
        params = self.generate_parameters()
        self.run_training_continuation(params[0], params[1], params[2])

    @pytest.mark.skipif(**tm.no_sklearn())
    def test_training_continuation_updaters_json(self):
        # Picked up from R tests.
        updaters = "grow_colmaker,prune,refresh"
        params = self.generate_parameters()
        for p in params:
            p["updater"] = updaters
        self.run_training_continuation(params[0], params[1], params[2])

    @pytest.mark.skipif(**tm.no_sklearn())
    def test_changed_parameter(self):
        from sklearn.datasets import load_breast_cancer

        X, y = load_breast_cancer(return_X_y=True)
        clf = xgb.XGBClassifier(n_estimators=2, eval_metric="logloss")
        clf.fit(X, y, eval_set=[(X, y)])
        assert tm.non_increasing(clf.evals_result()["validation_0"]["logloss"])

        with tempfile.TemporaryDirectory() as tmpdir:
            clf.save_model(os.path.join(tmpdir, "clf.json"))
            loaded = xgb.XGBClassifier()
            loaded.load_model(os.path.join(tmpdir, "clf.json"))

        clf = xgb.XGBClassifier(n_estimators=2)
        # change metric to error
        clf.set_params(eval_metric="error")
        clf.fit(X, y, eval_set=[(X, y)], xgb_model=loaded)
        assert tm.non_increasing(clf.evals_result()["validation_0"]["error"])

    @pytest.mark.parametrize("tree_method", ["hist", "approx", "exact"])
    def test_model_output(self, tree_method: str) -> None:
        run_training_continuation_model_output("cpu", tree_method)