1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
import os
import tempfile
import numpy as np
import pytest
import xgboost as xgb
from xgboost import testing as tm
from xgboost.testing.continuation import run_training_continuation_model_output
rng = np.random.RandomState(1337)
class TestTrainingContinuation:
num_parallel_tree = 3
def generate_parameters(self):
xgb_params_01_binary = {
"nthread": 1,
}
xgb_params_02_binary = {
"nthread": 1,
"num_parallel_tree": self.num_parallel_tree,
}
xgb_params_03_binary = {
"nthread": 1,
"num_class": 5,
"num_parallel_tree": self.num_parallel_tree,
}
return [xgb_params_01_binary, xgb_params_02_binary, xgb_params_03_binary]
def run_training_continuation(self, xgb_params_01, xgb_params_02, xgb_params_03):
from sklearn.datasets import load_digits
from sklearn.metrics import mean_squared_error
digits_2class = load_digits(n_class=2)
digits_5class = load_digits(n_class=5)
X_2class = digits_2class["data"]
y_2class = digits_2class["target"]
X_5class = digits_5class["data"]
y_5class = digits_5class["target"]
dtrain_2class = xgb.DMatrix(X_2class, label=y_2class)
dtrain_5class = xgb.DMatrix(X_5class, label=y_5class)
gbdt_01 = xgb.train(xgb_params_01, dtrain_2class, num_boost_round=10)
ntrees_01 = len(gbdt_01.get_dump())
assert ntrees_01 == 10
gbdt_02 = xgb.train(xgb_params_01, dtrain_2class, num_boost_round=0)
gbdt_02.save_model("xgb_tc.json")
gbdt_02a = xgb.train(
xgb_params_01, dtrain_2class, num_boost_round=10, xgb_model=gbdt_02
)
gbdt_02b = xgb.train(
xgb_params_01, dtrain_2class, num_boost_round=10, xgb_model="xgb_tc.json"
)
ntrees_02a = len(gbdt_02a.get_dump())
ntrees_02b = len(gbdt_02b.get_dump())
assert ntrees_02a == 10
assert ntrees_02b == 10
res1 = mean_squared_error(y_2class, gbdt_01.predict(dtrain_2class))
res2 = mean_squared_error(y_2class, gbdt_02a.predict(dtrain_2class))
assert res1 == res2
res1 = mean_squared_error(y_2class, gbdt_01.predict(dtrain_2class))
res2 = mean_squared_error(y_2class, gbdt_02b.predict(dtrain_2class))
assert res1 == res2
gbdt_03 = xgb.train(xgb_params_01, dtrain_2class, num_boost_round=3)
gbdt_03.save_model("xgb_tc.json")
gbdt_03a = xgb.train(
xgb_params_01, dtrain_2class, num_boost_round=7, xgb_model=gbdt_03
)
gbdt_03b = xgb.train(
xgb_params_01, dtrain_2class, num_boost_round=7, xgb_model="xgb_tc.json"
)
ntrees_03a = len(gbdt_03a.get_dump())
ntrees_03b = len(gbdt_03b.get_dump())
assert ntrees_03a == 10
assert ntrees_03b == 10
os.remove("xgb_tc.json")
res1 = mean_squared_error(y_2class, gbdt_03a.predict(dtrain_2class))
res2 = mean_squared_error(y_2class, gbdt_03b.predict(dtrain_2class))
assert res1 == res2
gbdt_04 = xgb.train(xgb_params_02, dtrain_2class, num_boost_round=3)
res1 = mean_squared_error(y_2class, gbdt_04.predict(dtrain_2class))
res2 = mean_squared_error(
y_2class,
gbdt_04.predict(
dtrain_2class, iteration_range=(0, gbdt_04.num_boosted_rounds())
),
)
assert res1 == res2
gbdt_04 = xgb.train(
xgb_params_02, dtrain_2class, num_boost_round=7, xgb_model=gbdt_04
)
res1 = mean_squared_error(y_2class, gbdt_04.predict(dtrain_2class))
res2 = mean_squared_error(
y_2class,
gbdt_04.predict(
dtrain_2class, iteration_range=(0, gbdt_04.num_boosted_rounds())
),
)
assert res1 == res2
gbdt_05 = xgb.train(xgb_params_03, dtrain_5class, num_boost_round=7)
gbdt_05 = xgb.train(
xgb_params_03, dtrain_5class, num_boost_round=3, xgb_model=gbdt_05
)
res1 = gbdt_05.predict(dtrain_5class)
res2 = gbdt_05.predict(
dtrain_5class, iteration_range=(0, gbdt_05.num_boosted_rounds())
)
np.testing.assert_almost_equal(res1, res2)
@pytest.mark.skipif(**tm.no_sklearn())
def test_training_continuation_json(self):
params = self.generate_parameters()
self.run_training_continuation(params[0], params[1], params[2])
@pytest.mark.skipif(**tm.no_sklearn())
def test_training_continuation_updaters_json(self):
# Picked up from R tests.
updaters = "grow_colmaker,prune,refresh"
params = self.generate_parameters()
for p in params:
p["updater"] = updaters
self.run_training_continuation(params[0], params[1], params[2])
@pytest.mark.skipif(**tm.no_sklearn())
def test_changed_parameter(self):
from sklearn.datasets import load_breast_cancer
X, y = load_breast_cancer(return_X_y=True)
clf = xgb.XGBClassifier(n_estimators=2, eval_metric="logloss")
clf.fit(X, y, eval_set=[(X, y)])
assert tm.non_increasing(clf.evals_result()["validation_0"]["logloss"])
with tempfile.TemporaryDirectory() as tmpdir:
clf.save_model(os.path.join(tmpdir, "clf.json"))
loaded = xgb.XGBClassifier()
loaded.load_model(os.path.join(tmpdir, "clf.json"))
clf = xgb.XGBClassifier(n_estimators=2)
# change metric to error
clf.set_params(eval_metric="error")
clf.fit(X, y, eval_set=[(X, y)], xgb_model=loaded)
assert tm.non_increasing(clf.evals_result()["validation_0"]["error"])
@pytest.mark.parametrize("tree_method", ["hist", "approx", "exact"])
def test_model_output(self, tree_method: str) -> None:
run_training_continuation_model_output("cpu", tree_method)
|