File: test_with_modin.py

package info (click to toggle)
xgboost 3.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 13,796 kB
  • sloc: cpp: 67,502; python: 35,503; java: 4,676; ansic: 1,426; sh: 1,320; xml: 1,197; makefile: 204; javascript: 19
file content (153 lines) | stat: -rw-r--r-- 5,592 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import numpy as np
import pandas as pd
import pytest

import xgboost as xgb
from xgboost import testing as tm
from xgboost.testing.data import run_base_margin_info

try:
    import modin.pandas as md
except ImportError:
    pass


pytestmark = pytest.mark.skipif(**tm.no_modin())


class TestModin:
    @pytest.mark.xfail
    def test_modin(self) -> None:
        df = md.DataFrame([[1, 2., True], [2, 3., False]],
                          columns=['a', 'b', 'c'])
        dm = xgb.DMatrix(df, label=md.Series([1, 2]))
        assert dm.feature_names == ['a', 'b', 'c']
        assert dm.feature_types == ['int', 'float', 'i']
        assert dm.num_row() == 2
        assert dm.num_col() == 3
        np.testing.assert_array_equal(dm.get_label(), np.array([1, 2]))

        # overwrite feature_names and feature_types
        dm = xgb.DMatrix(df, label=md.Series([1, 2]),
                         feature_names=['x', 'y', 'z'],
                         feature_types=['q', 'q', 'q'])
        assert dm.feature_names == ['x', 'y', 'z']
        assert dm.feature_types == ['q', 'q', 'q']
        assert dm.num_row() == 2
        assert dm.num_col() == 3

        # incorrect dtypes
        df = md.DataFrame([[1, 2., 'x'], [2, 3., 'y']],
                          columns=['a', 'b', 'c'])
        with pytest.raises(ValueError):
            xgb.DMatrix(df)

        # numeric columns
        df = md.DataFrame([[1, 2., True], [2, 3., False]])
        dm = xgb.DMatrix(df, label=md.Series([1, 2]))
        assert dm.feature_names == ['0', '1', '2']
        assert dm.feature_types == ['int', 'float', 'i']
        assert dm.num_row() == 2
        assert dm.num_col() == 3
        np.testing.assert_array_equal(dm.get_label(), np.array([1, 2]))

        df = md.DataFrame([[1, 2., 1], [2, 3., 1]], columns=[4, 5, 6])
        dm = xgb.DMatrix(df, label=md.Series([1, 2]))
        assert dm.feature_names == ['4', '5', '6']
        assert dm.feature_types == ['int', 'float', 'int']
        assert dm.num_row() == 2
        assert dm.num_col() == 3

        df = md.DataFrame({'A': ['X', 'Y', 'Z'], 'B': [1, 2, 3]})
        dummies = md.get_dummies(df)
        #    B  A_X  A_Y  A_Z
        # 0  1    1    0    0
        # 1  2    0    1    0
        # 2  3    0    0    1
        result, _, _ = xgb.data._transform_pandas_df(dummies,
                                                     enable_categorical=False)
        exp = np.array([[1., 1., 0., 0.],
                        [2., 0., 1., 0.],
                        [3., 0., 0., 1.]]).T
        np.testing.assert_array_equal(result.columns, exp)
        dm = xgb.DMatrix(dummies)
        assert dm.feature_names == ['B', 'A_X', 'A_Y', 'A_Z']
        if int(pd.__version__[0]) >= 2:
            assert dm.feature_types == ["int", "i", "i", "i"]
        else:
            assert dm.feature_types == ["int", "int", "int", "int"]

        assert dm.num_row() == 3
        assert dm.num_col() == 4

        df = md.DataFrame({'A=1': [1, 2, 3], 'A=2': [4, 5, 6]})
        dm = xgb.DMatrix(df)
        assert dm.feature_names == ['A=1', 'A=2']
        assert dm.feature_types == ['int', 'int']
        assert dm.num_row() == 3
        assert dm.num_col() == 2

        df_int = md.DataFrame([[1, 1.1], [2, 2.2]], columns=[9, 10])
        dm_int = xgb.DMatrix(df_int)
        df_range = md.DataFrame([[1, 1.1], [2, 2.2]], columns=range(9, 11, 1))
        dm_range = xgb.DMatrix(df_range)
        assert dm_int.feature_names == ['9', '10']  # assert not "9 "
        assert dm_int.feature_names == dm_range.feature_names

        # test MultiIndex as columns
        df = md.DataFrame(
            [
                (1, 2, 3, 4, 5, 6),
                (6, 5, 4, 3, 2, 1)
            ],
            columns=md.MultiIndex.from_tuples((
                ('a', 1), ('a', 2), ('a', 3),
                ('b', 1), ('b', 2), ('b', 3),
            ))
        )
        dm = xgb.DMatrix(df)
        assert dm.feature_names == ['a 1', 'a 2', 'a 3', 'b 1', 'b 2', 'b 3']
        assert dm.feature_types == ['int', 'int', 'int', 'int', 'int', 'int']
        assert dm.num_row() == 2
        assert dm.num_col() == 6

    def test_modin_label(self):
        # label must be a single column
        df = md.DataFrame({"A": ["X", "Y", "Z"], "B": [1, 2, 3]})
        with pytest.raises(ValueError):
            xgb.data._transform_pandas_df(df, False, None, None, "label")

        # label must be supported dtype
        df = md.DataFrame({"A": np.array(["a", "b", "c"], dtype=object)})
        with pytest.raises(ValueError):
            xgb.data._transform_pandas_df(df, False, None, None, "label")

        df = md.DataFrame({"A": np.array([1, 2, 3], dtype=int)})
        result, _, _ = xgb.data._transform_pandas_df(
            df, False, None, None, "label"
        )
        np.testing.assert_array_equal(
            np.stack(result.columns, axis=1),
            np.array([[1.0], [2.0], [3.0]], dtype=float),
        )
        dm = xgb.DMatrix(np.random.randn(3, 2), label=df)
        assert dm.num_row() == 3
        assert dm.num_col() == 2

    def test_modin_weight(self):
        kRows = 32
        kCols = 8

        X = np.random.randn(kRows, kCols)
        y = np.random.randn(kRows)
        w = np.random.uniform(size=kRows).astype(np.float32)
        w_pd = md.DataFrame(w)
        data = xgb.DMatrix(X, y, w_pd)

        assert data.num_row() == kRows
        assert data.num_col() == kCols

        np.testing.assert_array_equal(data.get_weight(), w)

    def test_base_margin(self):
        run_base_margin_info(md.DataFrame, xgb.DMatrix, "cpu")