1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
|
"""Copyright 2024, XGBoost contributors"""
import json
import os
import tempfile
from typing import Type, Union
import numpy as np
import pytest
import xgboost as xgb
pl = pytest.importorskip("polars")
@pytest.mark.parametrize("DMatrixT", [xgb.DMatrix, xgb.QuantileDMatrix])
def test_polars_basic(
DMatrixT: Union[Type[xgb.DMatrix], Type[xgb.QuantileDMatrix]]
) -> None:
df = pl.DataFrame({"a": [1, 2, 3], "b": [3, 4, 5]})
Xy = DMatrixT(df)
assert Xy.num_row() == df.shape[0]
assert Xy.num_col() == df.shape[1]
assert Xy.num_nonmissing() == np.prod(df.shape)
# feature info
assert Xy.feature_names == df.columns
assert Xy.feature_types == ["int", "int"]
res = Xy.get_data().toarray()
res1 = df.to_numpy()
if isinstance(Xy, xgb.QuantileDMatrix):
# skip min values in the cut.
np.testing.assert_allclose(res[1:, :], res1[1:, :])
else:
np.testing.assert_allclose(res, res1)
# boolean
df = pl.DataFrame({"a": [True, False, False], "b": [False, False, True]})
Xy = DMatrixT(df)
np.testing.assert_allclose(
Xy.get_data().data, np.array([1, 0, 0, 0, 0, 1]), atol=1e-5
)
def test_polars_missing() -> None:
df = pl.DataFrame({"a": [1, None, 3], "b": [3, 4, None]})
Xy = xgb.DMatrix(df)
assert Xy.num_row() == df.shape[0]
assert Xy.num_col() == df.shape[1]
assert Xy.num_nonmissing() == 4
np.testing.assert_allclose(Xy.get_data().data, np.array([1, 3, 4, 3]))
np.testing.assert_allclose(Xy.get_data().indptr, np.array([0, 2, 3, 4]))
np.testing.assert_allclose(Xy.get_data().indices, np.array([0, 1, 1, 0]))
ser = pl.Series("y", np.arange(0, df.shape[0]))
Xy.set_info(label=ser)
booster = xgb.train({}, Xy, num_boost_round=1)
predt0 = booster.inplace_predict(df)
predt1 = booster.predict(Xy)
np.testing.assert_allclose(predt0, predt1)
def test_classififer() -> None:
from sklearn.datasets import make_classification, make_multilabel_classification
X, y = make_classification(random_state=2024)
X_df = pl.DataFrame(X)
y_ser = pl.Series(y)
clf0 = xgb.XGBClassifier()
clf0.fit(X_df, y_ser)
clf1 = xgb.XGBClassifier()
clf1.fit(X, y)
with tempfile.TemporaryDirectory() as tmpdir:
path0 = os.path.join(tmpdir, "clf0.json")
clf0.save_model(path0)
path1 = os.path.join(tmpdir, "clf1.json")
clf1.save_model(path1)
with open(path0, "r") as fd:
model0 = json.load(fd)
with open(path1, "r") as fd:
model1 = json.load(fd)
model0["learner"]["feature_names"] = []
model0["learner"]["feature_types"] = []
assert model0 == model1
predt0 = clf0.predict(X)
predt1 = clf1.predict(X)
np.testing.assert_allclose(predt0, predt1)
assert (clf0.feature_names_in_ == X_df.columns).all()
assert clf0.n_features_in_ == X_df.shape[1]
X, y = make_multilabel_classification(128)
X_df = pl.DataFrame(X)
y_df = pl.DataFrame(y)
clf = xgb.XGBClassifier(n_estimators=1)
clf.fit(X_df, y_df)
assert clf.n_classes_ == 2
X, y = make_classification(n_classes=3, n_informative=5)
X_df = pl.DataFrame(X)
y_ser = pl.Series(y)
clf = xgb.XGBClassifier(n_estimators=1)
clf.fit(X_df, y_ser)
assert clf.n_classes_ == 3
def test_regressor() -> None:
from sklearn.datasets import make_regression
X, y = make_regression(n_targets=3)
X_df = pl.DataFrame(X)
y_df = pl.DataFrame(y)
assert y_df.shape[1] == 3
reg0 = xgb.XGBRegressor()
reg0.fit(X_df, y_df)
reg1 = xgb.XGBRegressor()
reg1.fit(X, y)
predt0 = reg0.predict(X)
predt1 = reg1.predict(X)
np.testing.assert_allclose(predt0, predt1)
def test_categorical() -> None:
import polars as pl
df = pl.DataFrame(
{"f0": [1, 2, 3], "b": ["a", "b", "c"]},
schema=[("a", pl.Int64()), ("b", pl.Categorical())]
)
with pytest.raises(NotImplementedError, match="Categorical feature"):
xgb.DMatrix(df, enable_categorical=True)
|