File: test_with_scipy.py

package info (click to toggle)
xgboost 3.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 13,796 kB
  • sloc: cpp: 67,502; python: 35,503; java: 4,676; ansic: 1,426; sh: 1,320; xml: 1,197; makefile: 204; javascript: 19
file content (87 lines) | stat: -rw-r--r-- 2,613 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import itertools
import warnings
from typing import Type

import numpy as np
import pytest
import scipy.sparse

import xgboost as xgb
from xgboost import testing as tm


@pytest.mark.filterwarnings("error")
@pytest.mark.parametrize(
    "DMatrixT,CSR",
    [
        (m, n)
        for m, n in itertools.product(
            (xgb.DMatrix, xgb.QuantileDMatrix),
            (scipy.sparse.csr_matrix, scipy.sparse.csr_array),
        )
    ],
)
def test_csr(DMatrixT: Type[xgb.DMatrix], CSR: Type) -> None:
    with warnings.catch_warnings():
        indptr = np.array([0, 2, 3, 6])
        indices = np.array([0, 2, 2, 0, 1, 2])
        data = np.array([1, 2, 3, 4, 5, 6])
        X = CSR((data, indices, indptr), shape=(3, 3))
        dtrain = DMatrixT(X)
        assert dtrain.num_row() == 3
        assert dtrain.num_col() == 3
        assert dtrain.num_nonmissing() == data.size


@pytest.mark.filterwarnings("error")
@pytest.mark.parametrize(
    "DMatrixT,CSC",
    [
        (m, n)
        for m, n in itertools.product(
            (xgb.DMatrix, xgb.QuantileDMatrix),
            (scipy.sparse.csc_matrix, scipy.sparse.csc_array),
        )
    ],
)
def test_csc(DMatrixT: Type[xgb.DMatrix], CSC: Type) -> None:
    with warnings.catch_warnings():
        row = np.array([0, 2, 2, 0, 1, 2])
        col = np.array([0, 0, 1, 2, 2, 2])
        data = np.array([1, 2, 3, 4, 5, 6])
        X = CSC((data, (row, col)), shape=(3, 3))
        dtrain = DMatrixT(X)
        assert dtrain.num_row() == 3
        assert dtrain.num_col() == 3
        assert dtrain.num_nonmissing() == data.size

        indptr = np.array([0, 3, 5])
        data = np.array([0, 1, 2, 3, 4])
        row_idx = np.array([0, 1, 2, 0, 2])
        X = CSC((data, row_idx, indptr), shape=(3, 2))
        assert tm.predictor_equal(DMatrixT(X.tocsr()), DMatrixT(X))


@pytest.mark.filterwarnings("error")
@pytest.mark.parametrize(
    "DMatrixT,COO",
    [
        (m, n)
        for m, n in itertools.product(
            (xgb.DMatrix, xgb.QuantileDMatrix),
            (scipy.sparse.coo_matrix, scipy.sparse.coo_array),
        )
    ],
)
def test_coo(DMatrixT: Type[xgb.DMatrix], COO: Type) -> None:
    with warnings.catch_warnings():
        row = np.array([0, 2, 2, 0, 1, 2])
        col = np.array([0, 0, 1, 2, 2, 2])
        data = np.array([1, 2, 3, 4, 5, 6])
        X = COO((data, (row, col)), shape=(3, 3))
        dtrain = DMatrixT(X)
        assert dtrain.num_row() == 3
        assert dtrain.num_col() == 3
        assert dtrain.num_nonmissing() == data.size

        assert tm.predictor_equal(DMatrixT(X.tocsr()), DMatrixT(X))