1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
|
import json
import logging
import subprocess
import numpy as np
import pytest
import sklearn
from xgboost import testing as tm
pytestmark = [
pytest.mark.skipif(**tm.no_spark()),
tm.timeout(240),
]
from pyspark.ml.linalg import Vectors
from pyspark.ml.tuning import CrossValidator, ParamGridBuilder
from pyspark.sql import SparkSession
from xgboost.spark import SparkXGBClassifier, SparkXGBRegressor, SparkXGBRegressorModel
gpu_discovery_script_path = "tests/test_distributed/test_gpu_with_spark/discover_gpu.sh"
def get_devices():
"""This works only if driver is the same machine of worker."""
completed = subprocess.run(gpu_discovery_script_path, stdout=subprocess.PIPE)
assert completed.returncode == 0, "Failed to execute discovery script."
msg = completed.stdout.decode("utf-8")
result = json.loads(msg)
addresses = result["addresses"]
return addresses
executor_gpu_amount = len(get_devices())
executor_cores = executor_gpu_amount
num_workers = executor_gpu_amount
@pytest.fixture(scope="module", autouse=True)
def spark_session_with_gpu():
spark_config = {
"spark.master": f"local-cluster[1, {executor_gpu_amount}, 1024]",
"spark.python.worker.reuse": "false",
"spark.driver.host": "127.0.0.1",
"spark.task.maxFailures": "1",
"spark.sql.execution.pyspark.udf.simplifiedTraceback.enabled": "false",
"spark.sql.pyspark.jvmStacktrace.enabled": "true",
"spark.cores.max": executor_cores,
"spark.task.cpus": "1",
"spark.executor.cores": executor_cores,
"spark.worker.resource.gpu.amount": executor_gpu_amount,
"spark.task.resource.gpu.amount": "1",
"spark.executor.resource.gpu.amount": executor_gpu_amount,
"spark.worker.resource.gpu.discoveryScript": gpu_discovery_script_path,
}
builder = SparkSession.builder.appName("xgboost spark python API Tests with GPU")
for k, v in spark_config.items():
builder.config(k, v)
spark = builder.getOrCreate()
logging.getLogger("pyspark").setLevel(logging.INFO)
# We run a dummy job so that we block until the workers have connected to the master
spark.sparkContext.parallelize(
range(num_workers), num_workers
).barrier().mapPartitions(lambda _: []).collect()
yield spark
spark.stop()
@pytest.fixture
def spark_iris_dataset(spark_session_with_gpu):
spark = spark_session_with_gpu
data = sklearn.datasets.load_iris()
train_rows = [
(Vectors.dense(features), float(label))
for features, label in zip(data.data[0::2], data.target[0::2])
]
train_df = spark.createDataFrame(
spark.sparkContext.parallelize(train_rows, num_workers), ["features", "label"]
)
test_rows = [
(Vectors.dense(features), float(label))
for features, label in zip(data.data[1::2], data.target[1::2])
]
test_df = spark.createDataFrame(
spark.sparkContext.parallelize(test_rows, num_workers), ["features", "label"]
)
return train_df, test_df
@pytest.fixture
def spark_iris_dataset_feature_cols(spark_session_with_gpu):
spark = spark_session_with_gpu
data = sklearn.datasets.load_iris()
train_rows = [
(*features.tolist(), float(label))
for features, label in zip(data.data[0::2], data.target[0::2])
]
train_df = spark.createDataFrame(
spark.sparkContext.parallelize(train_rows, num_workers),
[*data.feature_names, "label"],
)
test_rows = [
(*features.tolist(), float(label))
for features, label in zip(data.data[1::2], data.target[1::2])
]
test_df = spark.createDataFrame(
spark.sparkContext.parallelize(test_rows, num_workers),
[*data.feature_names, "label"],
)
return train_df, test_df, data.feature_names
@pytest.fixture
def spark_diabetes_dataset(spark_session_with_gpu):
spark = spark_session_with_gpu
data = sklearn.datasets.load_diabetes()
train_rows = [
(Vectors.dense(features), float(label))
for features, label in zip(data.data[0::2], data.target[0::2])
]
train_df = spark.createDataFrame(
spark.sparkContext.parallelize(train_rows, num_workers), ["features", "label"]
)
test_rows = [
(Vectors.dense(features), float(label))
for features, label in zip(data.data[1::2], data.target[1::2])
]
test_df = spark.createDataFrame(
spark.sparkContext.parallelize(test_rows, num_workers), ["features", "label"]
)
return train_df, test_df
@pytest.fixture
def spark_diabetes_dataset_feature_cols(spark_session_with_gpu):
spark = spark_session_with_gpu
data = sklearn.datasets.load_diabetes()
train_rows = [
(*features.tolist(), float(label))
for features, label in zip(data.data[0::2], data.target[0::2])
]
train_df = spark.createDataFrame(
spark.sparkContext.parallelize(train_rows, num_workers),
[*data.feature_names, "label"],
)
test_rows = [
(*features.tolist(), float(label))
for features, label in zip(data.data[1::2], data.target[1::2])
]
test_df = spark.createDataFrame(
spark.sparkContext.parallelize(test_rows, num_workers),
[*data.feature_names, "label"],
)
return train_df, test_df, data.feature_names
@pytest.mark.parametrize("tree_method", ["hist", "approx"])
def test_sparkxgb_classifier_with_gpu(tree_method: str, spark_iris_dataset) -> None:
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
classifier = SparkXGBClassifier(
device="cuda", num_workers=num_workers, tree_method=tree_method
)
train_df, test_df = spark_iris_dataset
model = classifier.fit(train_df)
config = json.loads(model.get_booster().save_config())
ctx = config["learner"]["generic_param"]
assert ctx["device"] == "cuda:0"
pred_result_df = model.transform(test_df)
evaluator = MulticlassClassificationEvaluator(metricName="f1")
f1 = evaluator.evaluate(pred_result_df)
assert f1 >= 0.97
def test_sparkxgb_classifier_feature_cols_with_gpu(spark_iris_dataset_feature_cols):
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
train_df, test_df, feature_names = spark_iris_dataset_feature_cols
classifier = SparkXGBClassifier(
features_col=feature_names, device="cuda", num_workers=num_workers
)
model = classifier.fit(train_df)
pred_result_df = model.transform(test_df)
evaluator = MulticlassClassificationEvaluator(metricName="f1")
f1 = evaluator.evaluate(pred_result_df)
assert f1 >= 0.97
def test_cv_sparkxgb_classifier_feature_cols_with_gpu(spark_iris_dataset_feature_cols):
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
train_df, test_df, feature_names = spark_iris_dataset_feature_cols
classifier = SparkXGBClassifier(
features_col=feature_names, device="cuda", num_workers=num_workers
)
grid = ParamGridBuilder().addGrid(classifier.max_depth, [6, 8]).build()
evaluator = MulticlassClassificationEvaluator(metricName="f1")
cv = CrossValidator(
estimator=classifier, evaluator=evaluator, estimatorParamMaps=grid, numFolds=3
)
cvModel = cv.fit(train_df)
pred_result_df = cvModel.transform(test_df)
f1 = evaluator.evaluate(pred_result_df)
assert f1 >= 0.97
clf = SparkXGBClassifier(
features_col=feature_names, use_gpu=True, num_workers=num_workers
)
grid = ParamGridBuilder().addGrid(clf.max_depth, [6, 8]).build()
evaluator = MulticlassClassificationEvaluator(metricName="f1")
cv = CrossValidator(
estimator=clf, evaluator=evaluator, estimatorParamMaps=grid, numFolds=3
)
cvModel = cv.fit(train_df)
pred_result_df = cvModel.transform(test_df)
f1 = evaluator.evaluate(pred_result_df)
assert f1 >= 0.97
def test_sparkxgb_regressor_with_gpu(spark_diabetes_dataset):
from pyspark.ml.evaluation import RegressionEvaluator
regressor = SparkXGBRegressor(device="cuda", num_workers=num_workers)
train_df, test_df = spark_diabetes_dataset
model = regressor.fit(train_df)
pred_result_df = model.transform(test_df)
evaluator = RegressionEvaluator(metricName="rmse")
rmse = evaluator.evaluate(pred_result_df)
assert rmse <= 65.0
def test_sparkxgb_regressor_feature_cols_with_gpu(spark_diabetes_dataset_feature_cols):
from pyspark.ml.evaluation import RegressionEvaluator
train_df, test_df, feature_names = spark_diabetes_dataset_feature_cols
regressor = SparkXGBRegressor(
features_col=feature_names, device="cuda", num_workers=num_workers
)
model = regressor.fit(train_df)
pred_result_df = model.transform(test_df)
evaluator = RegressionEvaluator(metricName="rmse")
rmse = evaluator.evaluate(pred_result_df)
assert rmse <= 65.0
def test_gpu_transform(spark_diabetes_dataset) -> None:
regressor = SparkXGBRegressor(device="cuda", num_workers=num_workers)
train_df, test_df = spark_diabetes_dataset
model: SparkXGBRegressorModel = regressor.fit(train_df)
# The model trained with GPUs, and transform with GPU configurations.
assert model._run_on_gpu()
model.set_device("cpu")
assert not model._run_on_gpu()
# without error
cpu_rows = model.transform(test_df).select("prediction").collect()
regressor = SparkXGBRegressor(device="cpu", num_workers=num_workers)
model = regressor.fit(train_df)
# The model trained with CPUs. Even with GPU configurations,
# still prefer transforming with CPUs
assert not model._run_on_gpu()
# Set gpu transform explicitly.
model.set_device("cuda")
assert model._run_on_gpu()
# without error
gpu_rows = model.transform(test_df).select("prediction").collect()
for cpu, gpu in zip(cpu_rows, gpu_rows):
np.testing.assert_allclose(cpu.prediction, gpu.prediction, atol=1e-3)
|