File: test_gpu_spark.py

package info (click to toggle)
xgboost 3.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 13,796 kB
  • sloc: cpp: 67,502; python: 35,503; java: 4,676; ansic: 1,426; sh: 1,320; xml: 1,197; makefile: 204; javascript: 19
file content (278 lines) | stat: -rw-r--r-- 9,968 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import json
import logging
import subprocess

import numpy as np
import pytest
import sklearn

from xgboost import testing as tm

pytestmark = [
    pytest.mark.skipif(**tm.no_spark()),
    tm.timeout(240),
]

from pyspark.ml.linalg import Vectors
from pyspark.ml.tuning import CrossValidator, ParamGridBuilder
from pyspark.sql import SparkSession

from xgboost.spark import SparkXGBClassifier, SparkXGBRegressor, SparkXGBRegressorModel

gpu_discovery_script_path = "tests/test_distributed/test_gpu_with_spark/discover_gpu.sh"


def get_devices():
    """This works only if driver is the same machine of worker."""
    completed = subprocess.run(gpu_discovery_script_path, stdout=subprocess.PIPE)
    assert completed.returncode == 0, "Failed to execute discovery script."
    msg = completed.stdout.decode("utf-8")
    result = json.loads(msg)
    addresses = result["addresses"]
    return addresses


executor_gpu_amount = len(get_devices())
executor_cores = executor_gpu_amount
num_workers = executor_gpu_amount


@pytest.fixture(scope="module", autouse=True)
def spark_session_with_gpu():
    spark_config = {
        "spark.master": f"local-cluster[1, {executor_gpu_amount}, 1024]",
        "spark.python.worker.reuse": "false",
        "spark.driver.host": "127.0.0.1",
        "spark.task.maxFailures": "1",
        "spark.sql.execution.pyspark.udf.simplifiedTraceback.enabled": "false",
        "spark.sql.pyspark.jvmStacktrace.enabled": "true",
        "spark.cores.max": executor_cores,
        "spark.task.cpus": "1",
        "spark.executor.cores": executor_cores,
        "spark.worker.resource.gpu.amount": executor_gpu_amount,
        "spark.task.resource.gpu.amount": "1",
        "spark.executor.resource.gpu.amount": executor_gpu_amount,
        "spark.worker.resource.gpu.discoveryScript": gpu_discovery_script_path,
    }
    builder = SparkSession.builder.appName("xgboost spark python API Tests with GPU")
    for k, v in spark_config.items():
        builder.config(k, v)
    spark = builder.getOrCreate()
    logging.getLogger("pyspark").setLevel(logging.INFO)
    # We run a dummy job so that we block until the workers have connected to the master
    spark.sparkContext.parallelize(
        range(num_workers), num_workers
    ).barrier().mapPartitions(lambda _: []).collect()
    yield spark
    spark.stop()


@pytest.fixture
def spark_iris_dataset(spark_session_with_gpu):
    spark = spark_session_with_gpu
    data = sklearn.datasets.load_iris()
    train_rows = [
        (Vectors.dense(features), float(label))
        for features, label in zip(data.data[0::2], data.target[0::2])
    ]
    train_df = spark.createDataFrame(
        spark.sparkContext.parallelize(train_rows, num_workers), ["features", "label"]
    )
    test_rows = [
        (Vectors.dense(features), float(label))
        for features, label in zip(data.data[1::2], data.target[1::2])
    ]
    test_df = spark.createDataFrame(
        spark.sparkContext.parallelize(test_rows, num_workers), ["features", "label"]
    )
    return train_df, test_df


@pytest.fixture
def spark_iris_dataset_feature_cols(spark_session_with_gpu):
    spark = spark_session_with_gpu
    data = sklearn.datasets.load_iris()
    train_rows = [
        (*features.tolist(), float(label))
        for features, label in zip(data.data[0::2], data.target[0::2])
    ]
    train_df = spark.createDataFrame(
        spark.sparkContext.parallelize(train_rows, num_workers),
        [*data.feature_names, "label"],
    )
    test_rows = [
        (*features.tolist(), float(label))
        for features, label in zip(data.data[1::2], data.target[1::2])
    ]
    test_df = spark.createDataFrame(
        spark.sparkContext.parallelize(test_rows, num_workers),
        [*data.feature_names, "label"],
    )
    return train_df, test_df, data.feature_names


@pytest.fixture
def spark_diabetes_dataset(spark_session_with_gpu):
    spark = spark_session_with_gpu
    data = sklearn.datasets.load_diabetes()
    train_rows = [
        (Vectors.dense(features), float(label))
        for features, label in zip(data.data[0::2], data.target[0::2])
    ]
    train_df = spark.createDataFrame(
        spark.sparkContext.parallelize(train_rows, num_workers), ["features", "label"]
    )
    test_rows = [
        (Vectors.dense(features), float(label))
        for features, label in zip(data.data[1::2], data.target[1::2])
    ]
    test_df = spark.createDataFrame(
        spark.sparkContext.parallelize(test_rows, num_workers), ["features", "label"]
    )
    return train_df, test_df


@pytest.fixture
def spark_diabetes_dataset_feature_cols(spark_session_with_gpu):
    spark = spark_session_with_gpu
    data = sklearn.datasets.load_diabetes()
    train_rows = [
        (*features.tolist(), float(label))
        for features, label in zip(data.data[0::2], data.target[0::2])
    ]
    train_df = spark.createDataFrame(
        spark.sparkContext.parallelize(train_rows, num_workers),
        [*data.feature_names, "label"],
    )
    test_rows = [
        (*features.tolist(), float(label))
        for features, label in zip(data.data[1::2], data.target[1::2])
    ]
    test_df = spark.createDataFrame(
        spark.sparkContext.parallelize(test_rows, num_workers),
        [*data.feature_names, "label"],
    )
    return train_df, test_df, data.feature_names


@pytest.mark.parametrize("tree_method", ["hist", "approx"])
def test_sparkxgb_classifier_with_gpu(tree_method: str, spark_iris_dataset) -> None:
    from pyspark.ml.evaluation import MulticlassClassificationEvaluator

    classifier = SparkXGBClassifier(
        device="cuda", num_workers=num_workers, tree_method=tree_method
    )
    train_df, test_df = spark_iris_dataset
    model = classifier.fit(train_df)
    config = json.loads(model.get_booster().save_config())
    ctx = config["learner"]["generic_param"]
    assert ctx["device"] == "cuda:0"
    pred_result_df = model.transform(test_df)
    evaluator = MulticlassClassificationEvaluator(metricName="f1")
    f1 = evaluator.evaluate(pred_result_df)
    assert f1 >= 0.97


def test_sparkxgb_classifier_feature_cols_with_gpu(spark_iris_dataset_feature_cols):
    from pyspark.ml.evaluation import MulticlassClassificationEvaluator

    train_df, test_df, feature_names = spark_iris_dataset_feature_cols

    classifier = SparkXGBClassifier(
        features_col=feature_names, device="cuda", num_workers=num_workers
    )

    model = classifier.fit(train_df)
    pred_result_df = model.transform(test_df)
    evaluator = MulticlassClassificationEvaluator(metricName="f1")
    f1 = evaluator.evaluate(pred_result_df)
    assert f1 >= 0.97


def test_cv_sparkxgb_classifier_feature_cols_with_gpu(spark_iris_dataset_feature_cols):
    from pyspark.ml.evaluation import MulticlassClassificationEvaluator

    train_df, test_df, feature_names = spark_iris_dataset_feature_cols

    classifier = SparkXGBClassifier(
        features_col=feature_names, device="cuda", num_workers=num_workers
    )
    grid = ParamGridBuilder().addGrid(classifier.max_depth, [6, 8]).build()
    evaluator = MulticlassClassificationEvaluator(metricName="f1")
    cv = CrossValidator(
        estimator=classifier, evaluator=evaluator, estimatorParamMaps=grid, numFolds=3
    )
    cvModel = cv.fit(train_df)
    pred_result_df = cvModel.transform(test_df)
    f1 = evaluator.evaluate(pred_result_df)
    assert f1 >= 0.97

    clf = SparkXGBClassifier(
        features_col=feature_names, use_gpu=True, num_workers=num_workers
    )
    grid = ParamGridBuilder().addGrid(clf.max_depth, [6, 8]).build()
    evaluator = MulticlassClassificationEvaluator(metricName="f1")
    cv = CrossValidator(
        estimator=clf, evaluator=evaluator, estimatorParamMaps=grid, numFolds=3
    )
    cvModel = cv.fit(train_df)
    pred_result_df = cvModel.transform(test_df)
    f1 = evaluator.evaluate(pred_result_df)
    assert f1 >= 0.97


def test_sparkxgb_regressor_with_gpu(spark_diabetes_dataset):
    from pyspark.ml.evaluation import RegressionEvaluator

    regressor = SparkXGBRegressor(device="cuda", num_workers=num_workers)
    train_df, test_df = spark_diabetes_dataset
    model = regressor.fit(train_df)
    pred_result_df = model.transform(test_df)
    evaluator = RegressionEvaluator(metricName="rmse")
    rmse = evaluator.evaluate(pred_result_df)
    assert rmse <= 65.0


def test_sparkxgb_regressor_feature_cols_with_gpu(spark_diabetes_dataset_feature_cols):
    from pyspark.ml.evaluation import RegressionEvaluator

    train_df, test_df, feature_names = spark_diabetes_dataset_feature_cols
    regressor = SparkXGBRegressor(
        features_col=feature_names, device="cuda", num_workers=num_workers
    )

    model = regressor.fit(train_df)
    pred_result_df = model.transform(test_df)
    evaluator = RegressionEvaluator(metricName="rmse")
    rmse = evaluator.evaluate(pred_result_df)
    assert rmse <= 65.0


def test_gpu_transform(spark_diabetes_dataset) -> None:
    regressor = SparkXGBRegressor(device="cuda", num_workers=num_workers)
    train_df, test_df = spark_diabetes_dataset
    model: SparkXGBRegressorModel = regressor.fit(train_df)

    # The model trained with GPUs, and transform with GPU configurations.
    assert model._run_on_gpu()

    model.set_device("cpu")
    assert not model._run_on_gpu()
    # without error
    cpu_rows = model.transform(test_df).select("prediction").collect()

    regressor = SparkXGBRegressor(device="cpu", num_workers=num_workers)
    model = regressor.fit(train_df)

    # The model trained with CPUs. Even with GPU configurations,
    # still prefer transforming with CPUs
    assert not model._run_on_gpu()

    # Set gpu transform explicitly.
    model.set_device("cuda")
    assert model._run_on_gpu()
    # without error
    gpu_rows = model.transform(test_df).select("prediction").collect()

    for cpu, gpu in zip(cpu_rows, gpu_rows):
        np.testing.assert_allclose(cpu.prediction, gpu.prediction, atol=1e-3)