File: test_data.py

package info (click to toggle)
xgboost 3.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 13,796 kB
  • sloc: cpp: 67,502; python: 35,503; java: 4,676; ansic: 1,426; sh: 1,320; xml: 1,197; makefile: 204; javascript: 19
file content (155 lines) | stat: -rw-r--r-- 5,154 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from typing import List

import numpy as np
import pandas as pd
import pytest

from xgboost import testing as tm

pytestmark = [pytest.mark.skipif(**tm.no_spark())]

from xgboost import DMatrix, QuantileDMatrix
from xgboost.spark.data import (
    _read_csr_matrix_from_unwrapped_spark_vec,
    alias,
    create_dmatrix_from_partitions,
    stack_series,
)


def test_stack() -> None:
    a = pd.DataFrame({"a": [[1, 2], [3, 4]]})
    b = stack_series(a["a"])
    assert b.shape == (2, 2)

    a = pd.DataFrame({"a": [[1], [3]]})
    b = stack_series(a["a"])
    assert b.shape == (2, 1)

    a = pd.DataFrame({"a": [np.array([1, 2]), np.array([3, 4])]})
    b = stack_series(a["a"])
    assert b.shape == (2, 2)

    a = pd.DataFrame({"a": [np.array([1]), np.array([3])]})
    b = stack_series(a["a"])
    assert b.shape == (2, 1)


def run_dmatrix_ctor(is_feature_cols: bool, is_qdm: bool, on_gpu: bool) -> None:
    rng = np.random.default_rng(0)
    dfs: List[pd.DataFrame] = []
    n_features = 16
    n_samples_per_batch = 16
    n_batches = 10
    feature_types = ["float"] * n_features

    for i in range(n_batches):
        X = rng.normal(loc=0, size=256).reshape(n_samples_per_batch, n_features)
        y = rng.normal(loc=0, size=n_samples_per_batch)
        m = rng.normal(loc=0, size=n_samples_per_batch)
        w = rng.normal(loc=0.5, scale=0.5, size=n_samples_per_batch)
        w -= w.min()

        valid = rng.binomial(n=1, p=0.5, size=16).astype(np.bool_)

        df = pd.DataFrame(
            {alias.label: y, alias.margin: m, alias.weight: w, alias.valid: valid}
        )
        if is_feature_cols:
            for j in range(X.shape[1]):
                df[f"feat-{j}"] = pd.Series(X[:, j])
        else:
            df[alias.data] = pd.Series(list(X))
        dfs.append(df)

    kwargs = {"feature_types": feature_types}
    device_id = 0 if on_gpu else None
    cols = [f"feat-{i}" for i in range(n_features)]
    feature_cols = cols if is_feature_cols else None
    train_Xy, valid_Xy = create_dmatrix_from_partitions(
        iterator=iter(dfs),
        feature_cols=feature_cols,
        dev_ordinal=device_id,
        use_qdm=is_qdm,
        kwargs=kwargs,
        enable_sparse_data_optim=False,
        has_validation_col=True,
    )

    if is_qdm:
        assert isinstance(train_Xy, QuantileDMatrix)
        assert isinstance(valid_Xy, QuantileDMatrix)
    else:
        assert not isinstance(train_Xy, QuantileDMatrix)
        assert isinstance(train_Xy, DMatrix)
        assert not isinstance(valid_Xy, QuantileDMatrix)
        assert isinstance(valid_Xy, DMatrix)

    assert valid_Xy is not None
    assert valid_Xy.num_row() + train_Xy.num_row() == n_samples_per_batch * n_batches
    assert train_Xy.num_col() == n_features
    assert valid_Xy.num_col() == n_features

    df = pd.concat(dfs, axis=0)
    df_train = df.loc[~df[alias.valid], :]
    df_valid = df.loc[df[alias.valid], :]

    assert df_train.shape[0] == train_Xy.num_row()
    assert df_valid.shape[0] == valid_Xy.num_row()

    # margin
    np.testing.assert_allclose(
        df_train[alias.margin].to_numpy(), train_Xy.get_base_margin()
    )
    np.testing.assert_allclose(
        df_valid[alias.margin].to_numpy(), valid_Xy.get_base_margin()
    )
    # weight
    np.testing.assert_allclose(df_train[alias.weight].to_numpy(), train_Xy.get_weight())
    np.testing.assert_allclose(df_valid[alias.weight].to_numpy(), valid_Xy.get_weight())
    # label
    np.testing.assert_allclose(df_train[alias.label].to_numpy(), train_Xy.get_label())
    np.testing.assert_allclose(df_valid[alias.label].to_numpy(), valid_Xy.get_label())

    np.testing.assert_equal(train_Xy.feature_types, feature_types)
    np.testing.assert_equal(valid_Xy.feature_types, feature_types)


@pytest.mark.parametrize(
    "is_feature_cols,is_qdm",
    [(True, True), (True, False), (False, True), (False, False)],
)
def test_dmatrix_ctor(is_feature_cols: bool, is_qdm: bool) -> None:
    run_dmatrix_ctor(is_feature_cols, is_qdm, on_gpu=False)


def test_read_csr_matrix_from_unwrapped_spark_vec() -> None:
    from scipy.sparse import csr_matrix

    pd1 = pd.DataFrame(
        {
            "featureVectorType": [0, 1, 1, 0],
            "featureVectorSize": [3, None, None, 3],
            "featureVectorIndices": [
                np.array([0, 2], dtype=np.int32),
                None,
                None,
                np.array([1, 2], dtype=np.int32),
            ],
            "featureVectorValues": [
                np.array([3.0, 0.0], dtype=np.float64),
                np.array([13.0, 14.0, 0.0], dtype=np.float64),
                np.array([0.0, 24.0, 25.0], dtype=np.float64),
                np.array([0.0, 35.0], dtype=np.float64),
            ],
        }
    )
    sm = _read_csr_matrix_from_unwrapped_spark_vec(pd1)
    assert isinstance(sm, csr_matrix)

    np.testing.assert_array_equal(
        sm.data, [3.0, 0.0, 13.0, 14.0, 0.0, 0.0, 24.0, 25.0, 0.0, 35.0]
    )
    np.testing.assert_array_equal(sm.indptr, [0, 2, 5, 8, 10])
    np.testing.assert_array_equal(sm.indices, [0, 2, 0, 1, 2, 0, 1, 2, 1, 2])
    assert sm.shape == (4, 3)