1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
"""
Learning to rank with the Dask Interface
========================================
.. versionadded:: 3.0.0
This is a demonstration of using XGBoost for learning to rank tasks using the
MSLR_10k_letor dataset. For more infomation about the dataset, please visit its
`description page <https://www.microsoft.com/en-us/research/project/mslr/>`_.
See :ref:`ltr-dist` for a general description for distributed learning to rank and
:ref:`ltr-dask` for Dask-specific features.
"""
from __future__ import annotations
import argparse
import os
from contextlib import contextmanager
from typing import Generator
import dask
import numpy as np
from dask import dataframe as dd
from distributed import Client, LocalCluster, wait
from sklearn.datasets import load_svmlight_file
from xgboost import dask as dxgb
def load_mslr_10k(
device: str, data_path: str, cache_path: str
) -> tuple[dd.DataFrame, dd.DataFrame, dd.DataFrame]:
"""Load the MSLR10k dataset from data_path and save parquet files in the cache_path."""
root_path = os.path.expanduser(args.data)
cache_path = os.path.expanduser(args.cache)
# Use only the Fold1 for demo:
# Train, Valid, Test
# {S1,S2,S3}, S4, S5
fold = 1
if not os.path.exists(cache_path):
os.mkdir(cache_path)
fold_path = os.path.join(root_path, f"Fold{fold}")
train_path = os.path.join(fold_path, "train.txt")
valid_path = os.path.join(fold_path, "vali.txt")
test_path = os.path.join(fold_path, "test.txt")
X_train, y_train, qid_train = load_svmlight_file(
train_path, query_id=True, dtype=np.float32
)
columns = [f"f{i}" for i in range(X_train.shape[1])]
X_train = dd.from_array(X_train.toarray(), columns=columns)
y_train = y_train.astype(np.int32)
qid_train = qid_train.astype(np.int32)
X_train["y"] = dd.from_array(y_train)
X_train["qid"] = dd.from_array(qid_train)
X_train.to_parquet(os.path.join(cache_path, "train"), engine="pyarrow")
X_valid, y_valid, qid_valid = load_svmlight_file(
valid_path, query_id=True, dtype=np.float32
)
X_valid = dd.from_array(X_valid.toarray(), columns=columns)
y_valid = y_valid.astype(np.int32)
qid_valid = qid_valid.astype(np.int32)
X_valid["y"] = dd.from_array(y_valid)
X_valid["qid"] = dd.from_array(qid_valid)
X_valid.to_parquet(os.path.join(cache_path, "valid"), engine="pyarrow")
X_test, y_test, qid_test = load_svmlight_file(
test_path, query_id=True, dtype=np.float32
)
X_test = dd.from_array(X_test.toarray(), columns=columns)
y_test = y_test.astype(np.int32)
qid_test = qid_test.astype(np.int32)
X_test["y"] = dd.from_array(y_test)
X_test["qid"] = dd.from_array(qid_test)
X_test.to_parquet(os.path.join(cache_path, "test"), engine="pyarrow")
df_train = dd.read_parquet(
os.path.join(cache_path, "train"), calculate_divisions=True
)
df_valid = dd.read_parquet(
os.path.join(cache_path, "valid"), calculate_divisions=True
)
df_test = dd.read_parquet(
os.path.join(cache_path, "test"), calculate_divisions=True
)
return df_train, df_valid, df_test
def ranking_demo(client: Client, args: argparse.Namespace) -> None:
"""Learning to rank with data sorted locally."""
df_tr, df_va, _ = load_mslr_10k(args.device, args.data, args.cache)
X_train: dd.DataFrame = df_tr[df_tr.columns.difference(["y", "qid"])]
y_train = df_tr[["y", "qid"]]
Xy_train = dxgb.DaskQuantileDMatrix(client, X_train, y_train.y, qid=y_train.qid)
X_valid: dd.DataFrame = df_va[df_va.columns.difference(["y", "qid"])]
y_valid = df_va[["y", "qid"]]
Xy_valid = dxgb.DaskQuantileDMatrix(
client, X_valid, y_valid.y, qid=y_valid.qid, ref=Xy_train
)
# Upon training, you will see a performance warning about sorting data based on
# query groups.
dxgb.train(
client,
{"objective": "rank:ndcg", "device": args.device},
Xy_train,
evals=[(Xy_train, "Train"), (Xy_valid, "Valid")],
num_boost_round=100,
)
def ranking_wo_split_demo(client: Client, args: argparse.Namespace) -> None:
"""Learning to rank with data partitioned according to query groups."""
df_tr, df_va, df_te = load_mslr_10k(args.device, args.data, args.cache)
X_tr = df_tr[df_tr.columns.difference(["y", "qid"])]
X_va = df_va[df_va.columns.difference(["y", "qid"])]
# `allow_group_split=False` makes sure data is partitioned according to the query
# groups.
ltr = dxgb.DaskXGBRanker(allow_group_split=False, device=args.device)
ltr.client = client
ltr = ltr.fit(
X_tr,
df_tr.y,
qid=df_tr.qid,
eval_set=[(X_tr, df_tr.y), (X_va, df_va.y)],
eval_qid=[df_tr.qid, df_va.qid],
verbose=True,
)
df_te = df_te.persist()
wait([df_te])
X_te = df_te[df_te.columns.difference(["y", "qid"])]
predt = ltr.predict(X_te)
y = client.compute(df_te.y)
wait([predt, y])
@contextmanager
def gen_client(device: str) -> Generator[Client, None, None]:
match device:
case "cuda":
from dask_cuda import LocalCUDACluster
with LocalCUDACluster() as cluster:
with Client(cluster) as client:
with dask.config.set(
{
"array.backend": "cupy",
"dataframe.backend": "cudf",
}
):
yield client
case "cpu":
with LocalCluster() as cluster:
with Client(cluster) as client:
yield client
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Demonstration of learning to rank using XGBoost."
)
parser.add_argument(
"--data",
type=str,
help="Root directory of the MSLR-WEB10K data.",
required=True,
)
parser.add_argument(
"--cache",
type=str,
help="Directory for caching processed data.",
required=True,
)
parser.add_argument("--device", choices=["cpu", "cuda"], default="cpu")
parser.add_argument(
"--no-split",
action="store_true",
help="Flag to indicate query groups should not be split.",
)
args = parser.parse_args()
with gen_client(args.device) as client:
if args.no_split:
ranking_wo_split_demo(client, args)
else:
ranking_demo(client, args)
|