File: dask_learning_to_rank.py

package info (click to toggle)
xgboost 3.0.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 13,848 kB
  • sloc: cpp: 67,603; python: 35,537; java: 4,676; ansic: 1,426; sh: 1,352; xml: 1,226; makefile: 204; javascript: 19
file content (201 lines) | stat: -rw-r--r-- 6,694 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
"""
Learning to rank with the Dask Interface
========================================

  .. versionadded:: 3.0.0

This is a demonstration of using XGBoost for learning to rank tasks using the
MSLR_10k_letor dataset. For more infomation about the dataset, please visit its
`description page <https://www.microsoft.com/en-us/research/project/mslr/>`_.

See :ref:`ltr-dist` for a general description for distributed learning to rank and
:ref:`ltr-dask` for Dask-specific features.

"""

from __future__ import annotations

import argparse
import os
from contextlib import contextmanager
from typing import Generator

import dask
import numpy as np
from dask import dataframe as dd
from distributed import Client, LocalCluster, wait
from sklearn.datasets import load_svmlight_file

from xgboost import dask as dxgb


def load_mslr_10k(
    device: str, data_path: str, cache_path: str
) -> tuple[dd.DataFrame, dd.DataFrame, dd.DataFrame]:
    """Load the MSLR10k dataset from data_path and save parquet files in the cache_path."""
    root_path = os.path.expanduser(args.data)
    cache_path = os.path.expanduser(args.cache)

    # Use only the Fold1 for demo:
    # Train,      Valid, Test
    # {S1,S2,S3}, S4,    S5
    fold = 1

    if not os.path.exists(cache_path):
        os.mkdir(cache_path)
        fold_path = os.path.join(root_path, f"Fold{fold}")
        train_path = os.path.join(fold_path, "train.txt")
        valid_path = os.path.join(fold_path, "vali.txt")
        test_path = os.path.join(fold_path, "test.txt")

        X_train, y_train, qid_train = load_svmlight_file(
            train_path, query_id=True, dtype=np.float32
        )
        columns = [f"f{i}" for i in range(X_train.shape[1])]
        X_train = dd.from_array(X_train.toarray(), columns=columns)
        y_train = y_train.astype(np.int32)
        qid_train = qid_train.astype(np.int32)

        X_train["y"] = dd.from_array(y_train)
        X_train["qid"] = dd.from_array(qid_train)
        X_train.to_parquet(os.path.join(cache_path, "train"), engine="pyarrow")

        X_valid, y_valid, qid_valid = load_svmlight_file(
            valid_path, query_id=True, dtype=np.float32
        )
        X_valid = dd.from_array(X_valid.toarray(), columns=columns)
        y_valid = y_valid.astype(np.int32)
        qid_valid = qid_valid.astype(np.int32)

        X_valid["y"] = dd.from_array(y_valid)
        X_valid["qid"] = dd.from_array(qid_valid)
        X_valid.to_parquet(os.path.join(cache_path, "valid"), engine="pyarrow")

        X_test, y_test, qid_test = load_svmlight_file(
            test_path, query_id=True, dtype=np.float32
        )

        X_test = dd.from_array(X_test.toarray(), columns=columns)
        y_test = y_test.astype(np.int32)
        qid_test = qid_test.astype(np.int32)

        X_test["y"] = dd.from_array(y_test)
        X_test["qid"] = dd.from_array(qid_test)
        X_test.to_parquet(os.path.join(cache_path, "test"), engine="pyarrow")

    df_train = dd.read_parquet(
        os.path.join(cache_path, "train"), calculate_divisions=True
    )
    df_valid = dd.read_parquet(
        os.path.join(cache_path, "valid"), calculate_divisions=True
    )
    df_test = dd.read_parquet(
        os.path.join(cache_path, "test"), calculate_divisions=True
    )

    return df_train, df_valid, df_test


def ranking_demo(client: Client, args: argparse.Namespace) -> None:
    """Learning to rank with data sorted locally."""
    df_tr, df_va, _ = load_mslr_10k(args.device, args.data, args.cache)

    X_train: dd.DataFrame = df_tr[df_tr.columns.difference(["y", "qid"])]
    y_train = df_tr[["y", "qid"]]
    Xy_train = dxgb.DaskQuantileDMatrix(client, X_train, y_train.y, qid=y_train.qid)

    X_valid: dd.DataFrame = df_va[df_va.columns.difference(["y", "qid"])]
    y_valid = df_va[["y", "qid"]]
    Xy_valid = dxgb.DaskQuantileDMatrix(
        client, X_valid, y_valid.y, qid=y_valid.qid, ref=Xy_train
    )
    # Upon training, you will see a performance warning about sorting data based on
    # query groups.
    dxgb.train(
        client,
        {"objective": "rank:ndcg", "device": args.device},
        Xy_train,
        evals=[(Xy_train, "Train"), (Xy_valid, "Valid")],
        num_boost_round=100,
    )


def ranking_wo_split_demo(client: Client, args: argparse.Namespace) -> None:
    """Learning to rank with data partitioned according to query groups."""
    df_tr, df_va, df_te = load_mslr_10k(args.device, args.data, args.cache)

    X_tr = df_tr[df_tr.columns.difference(["y", "qid"])]
    X_va = df_va[df_va.columns.difference(["y", "qid"])]

    # `allow_group_split=False` makes sure data is partitioned according to the query
    # groups.
    ltr = dxgb.DaskXGBRanker(allow_group_split=False, device=args.device)
    ltr.client = client
    ltr = ltr.fit(
        X_tr,
        df_tr.y,
        qid=df_tr.qid,
        eval_set=[(X_tr, df_tr.y), (X_va, df_va.y)],
        eval_qid=[df_tr.qid, df_va.qid],
        verbose=True,
    )

    df_te = df_te.persist()
    wait([df_te])

    X_te = df_te[df_te.columns.difference(["y", "qid"])]
    predt = ltr.predict(X_te)
    y = client.compute(df_te.y)
    wait([predt, y])


@contextmanager
def gen_client(device: str) -> Generator[Client, None, None]:
    match device:
        case "cuda":
            from dask_cuda import LocalCUDACluster

            with LocalCUDACluster() as cluster:
                with Client(cluster) as client:
                    with dask.config.set(
                        {
                            "array.backend": "cupy",
                            "dataframe.backend": "cudf",
                        }
                    ):
                        yield client
        case "cpu":
            with LocalCluster() as cluster:
                with Client(cluster) as client:
                    yield client


if __name__ == "__main__":
    parser = argparse.ArgumentParser(
        description="Demonstration of learning to rank using XGBoost."
    )
    parser.add_argument(
        "--data",
        type=str,
        help="Root directory of the MSLR-WEB10K data.",
        required=True,
    )
    parser.add_argument(
        "--cache",
        type=str,
        help="Directory for caching processed data.",
        required=True,
    )
    parser.add_argument("--device", choices=["cpu", "cuda"], default="cpu")
    parser.add_argument(
        "--no-split",
        action="store_true",
        help="Flag to indicate query groups should not be split.",
    )
    args = parser.parse_args()

    with gen_client(args.device) as client:
        if args.no_split:
            ranking_wo_split_demo(client, args)
        else:
            ranking_demo(client, args)