File: higgs-pred.R

package info (click to toggle)
xgboost 3.0.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 13,848 kB
  • sloc: cpp: 67,603; python: 35,537; java: 4,676; ansic: 1,426; sh: 1,352; xml: 1,226; makefile: 204; javascript: 19
file content (24 lines) | stat: -rw-r--r-- 722 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# install xgboost package, see R-package in root folder
require(xgboost)
require(methods)

modelfile <- "higgs.model"
outfile <- "higgs.pred.csv"
dtest <- read.csv("data/test.csv", header = TRUE)
data <- as.matrix(dtest[2:31])
idx <- dtest[[1]]

xgmat <- xgb.DMatrix(data, missing = -999.0)
bst <- xgb.load(modelfile = modelfile)
ypred <- predict(bst, xgmat)

rorder <- rank(ypred, ties.method = "first")

threshold <- 0.15
# to be completed
ntop <- length(rorder) - as.integer(threshold * length(rorder))
plabel <- ifelse(rorder > ntop, "s", "b")
outdata <- list("EventId" = idx,
                "RankOrder" = rorder,
                "Class" = plabel)
write.csv(outdata, file = outfile, quote = FALSE, row.names = FALSE)