File: hist_util.cc

package info (click to toggle)
xgboost 3.0.4-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 13,848 kB
  • sloc: cpp: 67,603; python: 35,537; java: 4,676; ansic: 1,426; sh: 1,352; xml: 1,226; makefile: 204; javascript: 19
file content (382 lines) | stat: -rw-r--r-- 16,497 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
/*!
 * Copyright 2017-2023 by Contributors
 * \file hist_util.cc
 */
#include <vector>
#include <limits>
#include <algorithm>

#include "../data/gradient_index.h"
#include "hist_util.h"

#include <sycl/sycl.hpp>

namespace xgboost {
namespace sycl {
namespace common {

/*!
 * \brief Fill histogram with zeroes
 */
template<typename GradientSumT>
void InitHist(::sycl::queue* qu, GHistRow<GradientSumT, MemoryType::on_device>* hist,
              size_t size, ::sycl::event* event) {
  *event = qu->fill(hist->Begin(),
                   xgboost::detail::GradientPairInternal<GradientSumT>(), size, *event);
}
template void InitHist(::sycl::queue* qu,
                       GHistRow<float,  MemoryType::on_device>* hist,
                       size_t size, ::sycl::event* event);
template void InitHist(::sycl::queue* qu,
                       GHistRow<double, MemoryType::on_device>* hist,
                       size_t size, ::sycl::event* event);

/*!
 * \brief Copy histogram from src to dst
 */
template<typename GradientSumT>
void CopyHist(::sycl::queue* qu,
              GHistRow<GradientSumT, MemoryType::on_device>* dst,
              const GHistRow<GradientSumT, MemoryType::on_device>& src,
              size_t size) {
  GradientSumT* pdst = reinterpret_cast<GradientSumT*>(dst->Data());
  const GradientSumT* psrc = reinterpret_cast<const GradientSumT*>(src.DataConst());

  qu->submit([&](::sycl::handler& cgh) {
    cgh.parallel_for<>(::sycl::range<1>(2 * size), [=](::sycl::item<1> pid) {
      const size_t i = pid.get_id(0);
      pdst[i] = psrc[i];
    });
  }).wait();
}
template void CopyHist(::sycl::queue* qu,
                       GHistRow<float, MemoryType::on_device>* dst,
                       const GHistRow<float, MemoryType::on_device>& src,
                       size_t size);
template void CopyHist(::sycl::queue* qu,
                       GHistRow<double, MemoryType::on_device>* dst,
                       const GHistRow<double, MemoryType::on_device>& src,
                       size_t size);

/*!
 * \brief Compute Subtraction: dst = src1 - src2
 */
template<typename GradientSumT>
::sycl::event SubtractionHist(::sycl::queue* qu,
                            GHistRow<GradientSumT, MemoryType::on_device>* dst,
                            const GHistRow<GradientSumT, MemoryType::on_device>& src1,
                            const GHistRow<GradientSumT, MemoryType::on_device>& src2,
                            size_t size, ::sycl::event event_priv) {
  GradientSumT* pdst = reinterpret_cast<GradientSumT*>(dst->Data());
  const GradientSumT* psrc1 = reinterpret_cast<const GradientSumT*>(src1.DataConst());
  const GradientSumT* psrc2 = reinterpret_cast<const GradientSumT*>(src2.DataConst());

  auto event_final = qu->submit([&](::sycl::handler& cgh) {
    cgh.depends_on(event_priv);
    cgh.parallel_for<>(::sycl::range<1>(2 * size), [pdst, psrc1, psrc2](::sycl::item<1> pid) {
      const size_t i = pid.get_id(0);
      pdst[i] = psrc1[i] - psrc2[i];
    });
  });
  return event_final;
}
template ::sycl::event SubtractionHist(::sycl::queue* qu,
                              GHistRow<float, MemoryType::on_device>* dst,
                              const GHistRow<float, MemoryType::on_device>& src1,
                              const GHistRow<float, MemoryType::on_device>& src2,
                              size_t size, ::sycl::event event_priv);
template ::sycl::event SubtractionHist(::sycl::queue* qu,
                              GHistRow<double, MemoryType::on_device>* dst,
                              const GHistRow<double, MemoryType::on_device>& src1,
                              const GHistRow<double, MemoryType::on_device>& src2,
                              size_t size, ::sycl::event event_priv);

inline auto GetBlocksParameters(::sycl::queue* qu, size_t size, size_t max_nblocks) {
  struct _ {
    size_t block_size, nblocks;
  };

  const size_t min_block_size = 32;
  const size_t max_compute_units =
    qu->get_device().get_info<::sycl::info::device::max_compute_units>();

  size_t nblocks = max_compute_units;

  size_t block_size = size / nblocks + !!(size % nblocks);
  if (block_size > (1u << 12)) {
    nblocks = max_nblocks;
    block_size = size / nblocks + !!(size % nblocks);
  }
  if (block_size < min_block_size) {
    block_size = min_block_size;
    nblocks = size / block_size + !!(size % block_size);
  }

  return _{block_size, nblocks};
}

// Kernel with buffer using
template<typename FPType, typename BinIdxType, bool isDense>
::sycl::event BuildHistKernel(::sycl::queue* qu,
                            const HostDeviceVector<GradientPair>& gpair,
                            const RowSetCollection::Elem& row_indices,
                            const GHistIndexMatrix& gmat,
                            GHistRow<FPType, MemoryType::on_device>* hist,
                            GHistRow<FPType, MemoryType::on_device>* hist_buffer,
                            ::sycl::event event_priv) {
  using GradientPairT = xgboost::detail::GradientPairInternal<FPType>;
  const size_t size = row_indices.Size();
  const size_t* rid = row_indices.begin;
  const size_t n_columns = isDense ? gmat.nfeatures : gmat.row_stride;
  const auto* pgh = gpair.ConstDevicePointer();
  const BinIdxType* gradient_index = gmat.index.data<BinIdxType>();
  const uint32_t* offsets = gmat.cut.cut_ptrs_.ConstDevicePointer();
  const size_t nbins = gmat.nbins;

  const size_t max_work_group_size =
    qu->get_device().get_info<::sycl::info::device::max_work_group_size>();
  const size_t work_group_size = n_columns < max_work_group_size ? n_columns : max_work_group_size;

  // Captured structured bindings are a C++20 extension
  const auto block_params = GetBlocksParameters(qu, size, hist_buffer->Size() / (nbins * 2));
  const size_t block_size = block_params.block_size;
  const size_t nblocks = block_params.nblocks;

  GradientPairT* hist_buffer_data = hist_buffer->Data();
  auto event_fill = qu->fill(hist_buffer_data, GradientPairT(0, 0),
                             nblocks * nbins * 2, event_priv);
  auto event_main = qu->submit([&](::sycl::handler& cgh) {
    cgh.depends_on(event_fill);
    cgh.parallel_for<>(::sycl::nd_range<2>(::sycl::range<2>(nblocks, work_group_size),
                                           ::sycl::range<2>(1, work_group_size)),
                       [=](::sycl::nd_item<2> pid) {
      size_t block = pid.get_global_id(0);
      size_t feat = pid.get_global_id(1);

      GradientPairT* hist_local = hist_buffer_data + block * nbins;
      for (size_t idx = 0; idx < block_size; ++idx) {
        size_t i = block * block_size + idx;
        if (i < size) {
          const size_t icol_start = n_columns * rid[i];
          const size_t idx_gh = rid[i];

          const GradientPairT pgh_row = {pgh[idx_gh].GetGrad(), pgh[idx_gh].GetHess()};
          pid.barrier(::sycl::access::fence_space::local_space);
          const BinIdxType* gr_index_local = gradient_index + icol_start;

          for (size_t j = feat; j < n_columns; j += work_group_size) {
            uint32_t idx_bin = static_cast<uint32_t>(gr_index_local[j]);
            if constexpr (isDense) {
              idx_bin += offsets[j];
            }
            if (idx_bin < nbins) {
              hist_local[idx_bin] += pgh_row;
            }
          }
        }
      }
    });
  });

  GradientPairT* hist_data = hist->Data();
  auto event_save = qu->submit([&](::sycl::handler& cgh) {
    cgh.depends_on(event_main);
    cgh.parallel_for<>(::sycl::range<1>(nbins), [=](::sycl::item<1> pid) {
      size_t idx_bin = pid.get_id(0);

      GradientPairT gpair = {0, 0};

      for (size_t j = 0; j < nblocks; ++j) {
        gpair += hist_buffer_data[j * nbins + idx_bin];
      }

      hist_data[idx_bin] = gpair;
    });
  });
  return event_save;
}

// Kernel with atomic using
template<typename FPType, typename BinIdxType, bool isDense>
::sycl::event BuildHistKernel(::sycl::queue* qu,
                            const HostDeviceVector<GradientPair>& gpair,
                            const RowSetCollection::Elem& row_indices,
                            const GHistIndexMatrix& gmat,
                            GHistRow<FPType, MemoryType::on_device>* hist,
                            ::sycl::event event_priv) {
  const size_t size = row_indices.Size();
  const size_t* rid = row_indices.begin;
  const size_t n_columns = isDense ? gmat.nfeatures : gmat.row_stride;
  const GradientPair::ValueT* pgh =
    reinterpret_cast<const GradientPair::ValueT*>(gpair.ConstDevicePointer());
  const BinIdxType* gradient_index = gmat.index.data<BinIdxType>();
  const uint32_t* offsets = gmat.cut.cut_ptrs_.ConstDevicePointer();
  FPType* hist_data = reinterpret_cast<FPType*>(hist->Data());
  const size_t nbins = gmat.nbins;

  constexpr size_t work_group_size = 32;
  const size_t n_work_groups = n_columns / work_group_size + (n_columns % work_group_size > 0);

  auto event_fill = qu->fill(hist_data, FPType(0), nbins * 2, event_priv);
  auto event_main = qu->submit([&](::sycl::handler& cgh) {
    cgh.depends_on(event_fill);
    cgh.parallel_for<>(::sycl::nd_range<2>(::sycl::range<2>(size, n_work_groups * work_group_size),
                                           ::sycl::range<2>(1, work_group_size)),
                       [=](::sycl::nd_item<2> pid) {
      const int i = pid.get_global_id(0);
      auto group  = pid.get_group();

      const size_t icol_start = n_columns * rid[i];
      const size_t idx_gh = rid[i];
      const FPType pgh_row[2] = {pgh[2 * idx_gh], pgh[2 * idx_gh + 1]};
      const BinIdxType* gr_index_local = gradient_index + icol_start;

      const size_t group_id = group.get_group_id()[1];
      const size_t local_id = group.get_local_id()[1];
      const size_t j = group_id * work_group_size + local_id;
      if (j < n_columns) {
        uint32_t idx_bin = static_cast<uint32_t>(gr_index_local[j]);
        if constexpr (isDense) {
          idx_bin += offsets[j];
        }
        if (idx_bin < nbins) {
          AtomicRef<FPType> gsum(hist_data[2 * idx_bin]);
          AtomicRef<FPType> hsum(hist_data[2 * idx_bin + 1]);
          gsum += pgh_row[0];
          hsum += pgh_row[1];
        }
      }
    });
  });
  return event_main;
}

template<typename FPType, typename BinIdxType>
::sycl::event BuildHistDispatchKernel(
                ::sycl::queue* qu,
                const HostDeviceVector<GradientPair>& gpair,
                const RowSetCollection::Elem& row_indices,
                const GHistIndexMatrix& gmat,
                GHistRow<FPType, MemoryType::on_device>* hist,
                bool isDense,
                GHistRow<FPType, MemoryType::on_device>* hist_buffer,
                ::sycl::event events_priv,
                bool force_atomic_use) {
  const size_t size = row_indices.Size();
  const size_t n_columns = isDense ? gmat.nfeatures : gmat.row_stride;
  const size_t nbins = gmat.nbins;

  // TODO(razdoburdin): replace the add-hock dispatching criteria by more sutable one
  bool use_atomic = (size < nbins) || (gmat.max_num_bins == gmat.nbins / n_columns);

  // force_atomic_use flag is used only for testing
  use_atomic = use_atomic || force_atomic_use;
  if (!use_atomic) {
    if (isDense) {
      return BuildHistKernel<FPType, BinIdxType, true>(qu, gpair, row_indices,
                                                       gmat, hist, hist_buffer,
                                                       events_priv);
    } else {
      return BuildHistKernel<FPType, uint32_t, false>(qu, gpair, row_indices,
                                                      gmat, hist, hist_buffer,
                                                      events_priv);
    }
  } else {
    if (isDense) {
      return BuildHistKernel<FPType, BinIdxType, true>(qu, gpair, row_indices,
                                                       gmat, hist, events_priv);
    } else {
      return BuildHistKernel<FPType, uint32_t, false>(qu, gpair, row_indices,
                                                      gmat, hist, events_priv);
    }
  }
}

template<typename FPType>
::sycl::event BuildHistKernel(::sycl::queue* qu,
                            const HostDeviceVector<GradientPair>& gpair,
                            const RowSetCollection::Elem& row_indices,
                            const GHistIndexMatrix& gmat, const bool isDense,
                            GHistRow<FPType, MemoryType::on_device>* hist,
                            GHistRow<FPType, MemoryType::on_device>* hist_buffer,
                            ::sycl::event event_priv,
                            bool force_atomic_use) {
  const bool is_dense = isDense;
  switch (gmat.index.GetBinTypeSize()) {
    case BinTypeSize::kUint8BinsTypeSize:
      return BuildHistDispatchKernel<FPType, uint8_t>(qu, gpair, row_indices,
                                                      gmat, hist, is_dense, hist_buffer,
                                                      event_priv, force_atomic_use);
      break;
    case BinTypeSize::kUint16BinsTypeSize:
      return BuildHistDispatchKernel<FPType, uint16_t>(qu, gpair, row_indices,
                                                       gmat, hist, is_dense, hist_buffer,
                                                       event_priv, force_atomic_use);
      break;
    case BinTypeSize::kUint32BinsTypeSize:
      return BuildHistDispatchKernel<FPType, uint32_t>(qu, gpair, row_indices,
                                                       gmat, hist, is_dense, hist_buffer,
                                                       event_priv, force_atomic_use);
      break;
    default:
      CHECK(false);  // no default behavior
  }
}

template <typename GradientSumT>
::sycl::event GHistBuilder<GradientSumT>::BuildHist(
              const HostDeviceVector<GradientPair>& gpair,
              const RowSetCollection::Elem& row_indices,
              const GHistIndexMatrix &gmat,
              GHistRowT<MemoryType::on_device>* hist,
              bool isDense,
              GHistRowT<MemoryType::on_device>* hist_buffer,
              ::sycl::event event_priv,
              bool force_atomic_use) {
  return BuildHistKernel<GradientSumT>(qu_, gpair, row_indices, gmat,
                                       isDense, hist, hist_buffer, event_priv,
                                       force_atomic_use);
}

template
::sycl::event GHistBuilder<float>::BuildHist(
              const HostDeviceVector<GradientPair>& gpair,
              const RowSetCollection::Elem& row_indices,
              const GHistIndexMatrix& gmat,
              GHistRow<float, MemoryType::on_device>* hist,
              bool isDense,
              GHistRow<float, MemoryType::on_device>* hist_buffer,
              ::sycl::event event_priv,
              bool force_atomic_use);
template
::sycl::event GHistBuilder<double>::BuildHist(
              const HostDeviceVector<GradientPair>& gpair,
              const RowSetCollection::Elem& row_indices,
              const GHistIndexMatrix& gmat,
              GHistRow<double, MemoryType::on_device>* hist,
              bool isDense,
              GHistRow<double, MemoryType::on_device>* hist_buffer,
              ::sycl::event event_priv,
              bool force_atomic_use);

template<typename GradientSumT>
void GHistBuilder<GradientSumT>::SubtractionTrick(GHistRowT<MemoryType::on_device>* self,
                                                  const GHistRowT<MemoryType::on_device>& sibling,
                                                  const GHistRowT<MemoryType::on_device>& parent) {
  const size_t size = self->Size();
  CHECK_EQ(sibling.Size(), size);
  CHECK_EQ(parent.Size(), size);

  SubtractionHist(qu_, self, parent, sibling, size, ::sycl::event());
}
template
void GHistBuilder<float>::SubtractionTrick(GHistRow<float, MemoryType::on_device>* self,
                                           const GHistRow<float, MemoryType::on_device>& sibling,
                                           const GHistRow<float, MemoryType::on_device>& parent);
template
void GHistBuilder<double>::SubtractionTrick(GHistRow<double, MemoryType::on_device>* self,
                                            const GHistRow<double, MemoryType::on_device>& sibling,
                                            const GHistRow<double, MemoryType::on_device>& parent);
}  // namespace common
}  // namespace sycl
}  // namespace xgboost