1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
|
/*!
* Copyright 2017-2023 by Contributors
* \file hist_util.cc
*/
#include <vector>
#include <limits>
#include <algorithm>
#include "../data/gradient_index.h"
#include "hist_util.h"
#include <sycl/sycl.hpp>
namespace xgboost {
namespace sycl {
namespace common {
/*!
* \brief Fill histogram with zeroes
*/
template<typename GradientSumT>
void InitHist(::sycl::queue* qu, GHistRow<GradientSumT, MemoryType::on_device>* hist,
size_t size, ::sycl::event* event) {
*event = qu->fill(hist->Begin(),
xgboost::detail::GradientPairInternal<GradientSumT>(), size, *event);
}
template void InitHist(::sycl::queue* qu,
GHistRow<float, MemoryType::on_device>* hist,
size_t size, ::sycl::event* event);
template void InitHist(::sycl::queue* qu,
GHistRow<double, MemoryType::on_device>* hist,
size_t size, ::sycl::event* event);
/*!
* \brief Copy histogram from src to dst
*/
template<typename GradientSumT>
void CopyHist(::sycl::queue* qu,
GHistRow<GradientSumT, MemoryType::on_device>* dst,
const GHistRow<GradientSumT, MemoryType::on_device>& src,
size_t size) {
GradientSumT* pdst = reinterpret_cast<GradientSumT*>(dst->Data());
const GradientSumT* psrc = reinterpret_cast<const GradientSumT*>(src.DataConst());
qu->submit([&](::sycl::handler& cgh) {
cgh.parallel_for<>(::sycl::range<1>(2 * size), [=](::sycl::item<1> pid) {
const size_t i = pid.get_id(0);
pdst[i] = psrc[i];
});
}).wait();
}
template void CopyHist(::sycl::queue* qu,
GHistRow<float, MemoryType::on_device>* dst,
const GHistRow<float, MemoryType::on_device>& src,
size_t size);
template void CopyHist(::sycl::queue* qu,
GHistRow<double, MemoryType::on_device>* dst,
const GHistRow<double, MemoryType::on_device>& src,
size_t size);
/*!
* \brief Compute Subtraction: dst = src1 - src2
*/
template<typename GradientSumT>
::sycl::event SubtractionHist(::sycl::queue* qu,
GHistRow<GradientSumT, MemoryType::on_device>* dst,
const GHistRow<GradientSumT, MemoryType::on_device>& src1,
const GHistRow<GradientSumT, MemoryType::on_device>& src2,
size_t size, ::sycl::event event_priv) {
GradientSumT* pdst = reinterpret_cast<GradientSumT*>(dst->Data());
const GradientSumT* psrc1 = reinterpret_cast<const GradientSumT*>(src1.DataConst());
const GradientSumT* psrc2 = reinterpret_cast<const GradientSumT*>(src2.DataConst());
auto event_final = qu->submit([&](::sycl::handler& cgh) {
cgh.depends_on(event_priv);
cgh.parallel_for<>(::sycl::range<1>(2 * size), [pdst, psrc1, psrc2](::sycl::item<1> pid) {
const size_t i = pid.get_id(0);
pdst[i] = psrc1[i] - psrc2[i];
});
});
return event_final;
}
template ::sycl::event SubtractionHist(::sycl::queue* qu,
GHistRow<float, MemoryType::on_device>* dst,
const GHistRow<float, MemoryType::on_device>& src1,
const GHistRow<float, MemoryType::on_device>& src2,
size_t size, ::sycl::event event_priv);
template ::sycl::event SubtractionHist(::sycl::queue* qu,
GHistRow<double, MemoryType::on_device>* dst,
const GHistRow<double, MemoryType::on_device>& src1,
const GHistRow<double, MemoryType::on_device>& src2,
size_t size, ::sycl::event event_priv);
inline auto GetBlocksParameters(::sycl::queue* qu, size_t size, size_t max_nblocks) {
struct _ {
size_t block_size, nblocks;
};
const size_t min_block_size = 32;
const size_t max_compute_units =
qu->get_device().get_info<::sycl::info::device::max_compute_units>();
size_t nblocks = max_compute_units;
size_t block_size = size / nblocks + !!(size % nblocks);
if (block_size > (1u << 12)) {
nblocks = max_nblocks;
block_size = size / nblocks + !!(size % nblocks);
}
if (block_size < min_block_size) {
block_size = min_block_size;
nblocks = size / block_size + !!(size % block_size);
}
return _{block_size, nblocks};
}
// Kernel with buffer using
template<typename FPType, typename BinIdxType, bool isDense>
::sycl::event BuildHistKernel(::sycl::queue* qu,
const HostDeviceVector<GradientPair>& gpair,
const RowSetCollection::Elem& row_indices,
const GHistIndexMatrix& gmat,
GHistRow<FPType, MemoryType::on_device>* hist,
GHistRow<FPType, MemoryType::on_device>* hist_buffer,
::sycl::event event_priv) {
using GradientPairT = xgboost::detail::GradientPairInternal<FPType>;
const size_t size = row_indices.Size();
const size_t* rid = row_indices.begin;
const size_t n_columns = isDense ? gmat.nfeatures : gmat.row_stride;
const auto* pgh = gpair.ConstDevicePointer();
const BinIdxType* gradient_index = gmat.index.data<BinIdxType>();
const uint32_t* offsets = gmat.cut.cut_ptrs_.ConstDevicePointer();
const size_t nbins = gmat.nbins;
const size_t max_work_group_size =
qu->get_device().get_info<::sycl::info::device::max_work_group_size>();
const size_t work_group_size = n_columns < max_work_group_size ? n_columns : max_work_group_size;
// Captured structured bindings are a C++20 extension
const auto block_params = GetBlocksParameters(qu, size, hist_buffer->Size() / (nbins * 2));
const size_t block_size = block_params.block_size;
const size_t nblocks = block_params.nblocks;
GradientPairT* hist_buffer_data = hist_buffer->Data();
auto event_fill = qu->fill(hist_buffer_data, GradientPairT(0, 0),
nblocks * nbins * 2, event_priv);
auto event_main = qu->submit([&](::sycl::handler& cgh) {
cgh.depends_on(event_fill);
cgh.parallel_for<>(::sycl::nd_range<2>(::sycl::range<2>(nblocks, work_group_size),
::sycl::range<2>(1, work_group_size)),
[=](::sycl::nd_item<2> pid) {
size_t block = pid.get_global_id(0);
size_t feat = pid.get_global_id(1);
GradientPairT* hist_local = hist_buffer_data + block * nbins;
for (size_t idx = 0; idx < block_size; ++idx) {
size_t i = block * block_size + idx;
if (i < size) {
const size_t icol_start = n_columns * rid[i];
const size_t idx_gh = rid[i];
const GradientPairT pgh_row = {pgh[idx_gh].GetGrad(), pgh[idx_gh].GetHess()};
pid.barrier(::sycl::access::fence_space::local_space);
const BinIdxType* gr_index_local = gradient_index + icol_start;
for (size_t j = feat; j < n_columns; j += work_group_size) {
uint32_t idx_bin = static_cast<uint32_t>(gr_index_local[j]);
if constexpr (isDense) {
idx_bin += offsets[j];
}
if (idx_bin < nbins) {
hist_local[idx_bin] += pgh_row;
}
}
}
}
});
});
GradientPairT* hist_data = hist->Data();
auto event_save = qu->submit([&](::sycl::handler& cgh) {
cgh.depends_on(event_main);
cgh.parallel_for<>(::sycl::range<1>(nbins), [=](::sycl::item<1> pid) {
size_t idx_bin = pid.get_id(0);
GradientPairT gpair = {0, 0};
for (size_t j = 0; j < nblocks; ++j) {
gpair += hist_buffer_data[j * nbins + idx_bin];
}
hist_data[idx_bin] = gpair;
});
});
return event_save;
}
// Kernel with atomic using
template<typename FPType, typename BinIdxType, bool isDense>
::sycl::event BuildHistKernel(::sycl::queue* qu,
const HostDeviceVector<GradientPair>& gpair,
const RowSetCollection::Elem& row_indices,
const GHistIndexMatrix& gmat,
GHistRow<FPType, MemoryType::on_device>* hist,
::sycl::event event_priv) {
const size_t size = row_indices.Size();
const size_t* rid = row_indices.begin;
const size_t n_columns = isDense ? gmat.nfeatures : gmat.row_stride;
const GradientPair::ValueT* pgh =
reinterpret_cast<const GradientPair::ValueT*>(gpair.ConstDevicePointer());
const BinIdxType* gradient_index = gmat.index.data<BinIdxType>();
const uint32_t* offsets = gmat.cut.cut_ptrs_.ConstDevicePointer();
FPType* hist_data = reinterpret_cast<FPType*>(hist->Data());
const size_t nbins = gmat.nbins;
constexpr size_t work_group_size = 32;
const size_t n_work_groups = n_columns / work_group_size + (n_columns % work_group_size > 0);
auto event_fill = qu->fill(hist_data, FPType(0), nbins * 2, event_priv);
auto event_main = qu->submit([&](::sycl::handler& cgh) {
cgh.depends_on(event_fill);
cgh.parallel_for<>(::sycl::nd_range<2>(::sycl::range<2>(size, n_work_groups * work_group_size),
::sycl::range<2>(1, work_group_size)),
[=](::sycl::nd_item<2> pid) {
const int i = pid.get_global_id(0);
auto group = pid.get_group();
const size_t icol_start = n_columns * rid[i];
const size_t idx_gh = rid[i];
const FPType pgh_row[2] = {pgh[2 * idx_gh], pgh[2 * idx_gh + 1]};
const BinIdxType* gr_index_local = gradient_index + icol_start;
const size_t group_id = group.get_group_id()[1];
const size_t local_id = group.get_local_id()[1];
const size_t j = group_id * work_group_size + local_id;
if (j < n_columns) {
uint32_t idx_bin = static_cast<uint32_t>(gr_index_local[j]);
if constexpr (isDense) {
idx_bin += offsets[j];
}
if (idx_bin < nbins) {
AtomicRef<FPType> gsum(hist_data[2 * idx_bin]);
AtomicRef<FPType> hsum(hist_data[2 * idx_bin + 1]);
gsum += pgh_row[0];
hsum += pgh_row[1];
}
}
});
});
return event_main;
}
template<typename FPType, typename BinIdxType>
::sycl::event BuildHistDispatchKernel(
::sycl::queue* qu,
const HostDeviceVector<GradientPair>& gpair,
const RowSetCollection::Elem& row_indices,
const GHistIndexMatrix& gmat,
GHistRow<FPType, MemoryType::on_device>* hist,
bool isDense,
GHistRow<FPType, MemoryType::on_device>* hist_buffer,
::sycl::event events_priv,
bool force_atomic_use) {
const size_t size = row_indices.Size();
const size_t n_columns = isDense ? gmat.nfeatures : gmat.row_stride;
const size_t nbins = gmat.nbins;
// TODO(razdoburdin): replace the add-hock dispatching criteria by more sutable one
bool use_atomic = (size < nbins) || (gmat.max_num_bins == gmat.nbins / n_columns);
// force_atomic_use flag is used only for testing
use_atomic = use_atomic || force_atomic_use;
if (!use_atomic) {
if (isDense) {
return BuildHistKernel<FPType, BinIdxType, true>(qu, gpair, row_indices,
gmat, hist, hist_buffer,
events_priv);
} else {
return BuildHistKernel<FPType, uint32_t, false>(qu, gpair, row_indices,
gmat, hist, hist_buffer,
events_priv);
}
} else {
if (isDense) {
return BuildHistKernel<FPType, BinIdxType, true>(qu, gpair, row_indices,
gmat, hist, events_priv);
} else {
return BuildHistKernel<FPType, uint32_t, false>(qu, gpair, row_indices,
gmat, hist, events_priv);
}
}
}
template<typename FPType>
::sycl::event BuildHistKernel(::sycl::queue* qu,
const HostDeviceVector<GradientPair>& gpair,
const RowSetCollection::Elem& row_indices,
const GHistIndexMatrix& gmat, const bool isDense,
GHistRow<FPType, MemoryType::on_device>* hist,
GHistRow<FPType, MemoryType::on_device>* hist_buffer,
::sycl::event event_priv,
bool force_atomic_use) {
const bool is_dense = isDense;
switch (gmat.index.GetBinTypeSize()) {
case BinTypeSize::kUint8BinsTypeSize:
return BuildHistDispatchKernel<FPType, uint8_t>(qu, gpair, row_indices,
gmat, hist, is_dense, hist_buffer,
event_priv, force_atomic_use);
break;
case BinTypeSize::kUint16BinsTypeSize:
return BuildHistDispatchKernel<FPType, uint16_t>(qu, gpair, row_indices,
gmat, hist, is_dense, hist_buffer,
event_priv, force_atomic_use);
break;
case BinTypeSize::kUint32BinsTypeSize:
return BuildHistDispatchKernel<FPType, uint32_t>(qu, gpair, row_indices,
gmat, hist, is_dense, hist_buffer,
event_priv, force_atomic_use);
break;
default:
CHECK(false); // no default behavior
}
}
template <typename GradientSumT>
::sycl::event GHistBuilder<GradientSumT>::BuildHist(
const HostDeviceVector<GradientPair>& gpair,
const RowSetCollection::Elem& row_indices,
const GHistIndexMatrix &gmat,
GHistRowT<MemoryType::on_device>* hist,
bool isDense,
GHistRowT<MemoryType::on_device>* hist_buffer,
::sycl::event event_priv,
bool force_atomic_use) {
return BuildHistKernel<GradientSumT>(qu_, gpair, row_indices, gmat,
isDense, hist, hist_buffer, event_priv,
force_atomic_use);
}
template
::sycl::event GHistBuilder<float>::BuildHist(
const HostDeviceVector<GradientPair>& gpair,
const RowSetCollection::Elem& row_indices,
const GHistIndexMatrix& gmat,
GHistRow<float, MemoryType::on_device>* hist,
bool isDense,
GHistRow<float, MemoryType::on_device>* hist_buffer,
::sycl::event event_priv,
bool force_atomic_use);
template
::sycl::event GHistBuilder<double>::BuildHist(
const HostDeviceVector<GradientPair>& gpair,
const RowSetCollection::Elem& row_indices,
const GHistIndexMatrix& gmat,
GHistRow<double, MemoryType::on_device>* hist,
bool isDense,
GHistRow<double, MemoryType::on_device>* hist_buffer,
::sycl::event event_priv,
bool force_atomic_use);
template<typename GradientSumT>
void GHistBuilder<GradientSumT>::SubtractionTrick(GHistRowT<MemoryType::on_device>* self,
const GHistRowT<MemoryType::on_device>& sibling,
const GHistRowT<MemoryType::on_device>& parent) {
const size_t size = self->Size();
CHECK_EQ(sibling.Size(), size);
CHECK_EQ(parent.Size(), size);
SubtractionHist(qu_, self, parent, sibling, size, ::sycl::event());
}
template
void GHistBuilder<float>::SubtractionTrick(GHistRow<float, MemoryType::on_device>* self,
const GHistRow<float, MemoryType::on_device>& sibling,
const GHistRow<float, MemoryType::on_device>& parent);
template
void GHistBuilder<double>::SubtractionTrick(GHistRow<double, MemoryType::on_device>* self,
const GHistRow<double, MemoryType::on_device>& sibling,
const GHistRow<double, MemoryType::on_device>& parent);
} // namespace common
} // namespace sycl
} // namespace xgboost
|