File: gradient_index.cc

package info (click to toggle)
xgboost 3.0.4-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 13,848 kB
  • sloc: cpp: 67,603; python: 35,537; java: 4,676; ansic: 1,426; sh: 1,352; xml: 1,226; makefile: 204; javascript: 19
file content (176 lines) | stat: -rw-r--r-- 6,412 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
/*!
 * Copyright 2017-2024 by Contributors
 * \file gradient_index.cc
 */
#include <vector>
#include <limits>
#include <algorithm>

#include "gradient_index.h"

#include <sycl/sycl.hpp>

namespace xgboost {
namespace sycl {
namespace common {

uint32_t SearchBin(const bst_float* cut_values, const uint32_t* cut_ptrs, Entry const& e) {
  auto beg = cut_ptrs[e.index];
  auto end = cut_ptrs[e.index + 1];
  auto it = std::upper_bound(cut_values + beg, cut_values + end, e.fvalue);
  uint32_t idx = it - cut_values;
  if (idx == end) {
    idx -= 1;
  }
  return idx;
}

template <typename BinIdxType>
void mergeSort(BinIdxType* begin, BinIdxType* end, BinIdxType* buf) {
  const size_t total_len = end - begin;
  for (size_t block_len = 1; block_len < total_len; block_len <<= 1) {
    for (size_t cur_block = 0; cur_block + block_len < total_len; cur_block += 2 * block_len) {
      size_t start = cur_block;
      size_t mid = start + block_len;
      size_t finish = mid + block_len < total_len ? mid + block_len : total_len;
      size_t left_pos = start;
      size_t right_pos = mid;
      size_t pos = start;
      while (left_pos < mid || right_pos < finish) {
        if (left_pos < mid && (right_pos == finish || begin[left_pos] < begin[right_pos])) {
          buf[pos++] = begin[left_pos++];
        } else {
          buf[pos++] = begin[right_pos++];
        }
      }
      for (size_t i = start; i < finish; i++) begin[i] = buf[i];
    }
  }
}

template <typename BinIdxType, bool isDense>
void GHistIndexMatrix::SetIndexData(::sycl::queue* qu,
                                    BinIdxType* index_data,
                                    DMatrix *dmat,
                                    size_t nbins,
                                    size_t row_stride) {
  if (nbins == 0) return;
  const bst_float* cut_values = cut.cut_values_.ConstDevicePointer();
  const uint32_t* cut_ptrs = cut.cut_ptrs_.ConstDevicePointer();
  size_t* hit_count_ptr = hit_count.DevicePointer();

  BinIdxType* sort_data = reinterpret_cast<BinIdxType*>(sort_buff.Data());

  ::sycl::event event;
  for (auto &batch : dmat->GetBatches<SparsePage>()) {
    for (auto &batch : dmat->GetBatches<SparsePage>()) {
      const xgboost::Entry *data_ptr = batch.data.ConstDevicePointer();
      const bst_idx_t *offset_vec = batch.offset.ConstDevicePointer();
      size_t batch_size = batch.Size();
      if (batch_size > 0) {
        const auto base_rowid = batch.base_rowid;
        event = qu->submit([&](::sycl::handler& cgh) {
          cgh.depends_on(event);
          cgh.parallel_for<>(::sycl::range<1>(batch_size), [=](::sycl::item<1> pid) {
          const size_t i = pid.get_id(0);
          const size_t ibegin = offset_vec[i];
          const size_t iend = offset_vec[i + 1];
          const size_t size = iend - ibegin;
          const size_t start = (i + base_rowid) * row_stride;
          for (bst_uint j = 0; j < size; ++j) {
            uint32_t idx = SearchBin(cut_values, cut_ptrs, data_ptr[ibegin + j]);
            index_data[start + j] = isDense ? idx - cut_ptrs[j] : idx;
            AtomicRef<size_t> hit_count_ref(hit_count_ptr[idx]);
            hit_count_ref.fetch_add(1);
          }
          if constexpr (!isDense) {
            // Sparse case only
            mergeSort<BinIdxType>(index_data + start, index_data + start + size, sort_data + start);
            for (bst_uint j = size; j < row_stride; ++j) {
              index_data[start + j] = nbins;
            }
          }
        });
      });
      }
    }
  }
  qu->wait();
}

void GHistIndexMatrix::ResizeIndex(size_t n_index, bool isDense) {
  if ((max_num_bins - 1 <= static_cast<int>(std::numeric_limits<uint8_t>::max())) && isDense) {
    index.SetBinTypeSize(BinTypeSize::kUint8BinsTypeSize);
    index.Resize((sizeof(uint8_t)) * n_index);
  } else if ((max_num_bins - 1 > static_cast<int>(std::numeric_limits<uint8_t>::max())  &&
    max_num_bins - 1 <= static_cast<int>(std::numeric_limits<uint16_t>::max())) && isDense) {
    index.SetBinTypeSize(BinTypeSize::kUint16BinsTypeSize);
    index.Resize((sizeof(uint16_t)) * n_index);
  } else {
    index.SetBinTypeSize(BinTypeSize::kUint32BinsTypeSize);
    index.Resize((sizeof(uint32_t)) * n_index);
  }
}

void GHistIndexMatrix::Init(::sycl::queue* qu,
                            Context const * ctx,
                            DMatrix *dmat,
                            int max_bins) {
  nfeatures = dmat->Info().num_col_;

  cut = xgboost::common::SketchOnDMatrix(ctx, dmat, max_bins);
  cut.SetDevice(ctx->Device());

  max_num_bins = max_bins;
  const uint32_t nbins = cut.Ptrs().back();
  this->nbins = nbins;

  hit_count.SetDevice(ctx->Device());
  hit_count.Resize(nbins, 0);

  this->p_fmat = dmat;
  const bool isDense = dmat->IsDense();
  this->isDense_ = isDense;

  index.setQueue(qu);

  row_stride = 0;
  size_t n_rows = 0;
  for (const auto& batch : dmat->GetBatches<SparsePage>()) {
    const auto& row_offset = batch.offset.ConstHostVector();
    batch.data.SetDevice(ctx->Device());
    batch.offset.SetDevice(ctx->Device());
    n_rows += batch.Size();
    for (auto i = 1ull; i < row_offset.size(); i++) {
      row_stride = std::max(row_stride, static_cast<size_t>(row_offset[i] - row_offset[i - 1]));
    }
  }

  const size_t n_offsets = cut.cut_ptrs_.Size() - 1;
  const size_t n_index = n_rows * row_stride;
  ResizeIndex(n_index, isDense);

  CHECK_GT(cut.cut_values_.Size(), 0U);

  if (isDense) {
    BinTypeSize curent_bin_size = index.GetBinTypeSize();
    if (curent_bin_size == BinTypeSize::kUint8BinsTypeSize) {
      SetIndexData<uint8_t, true>(qu, index.data<uint8_t>(), dmat, nbins, row_stride);

    } else if (curent_bin_size == BinTypeSize::kUint16BinsTypeSize) {
      SetIndexData<uint16_t, true>(qu, index.data<uint16_t>(), dmat, nbins, row_stride);
    } else {
      CHECK_EQ(curent_bin_size, BinTypeSize::kUint32BinsTypeSize);
      SetIndexData<uint32_t, true>(qu, index.data<uint32_t>(), dmat, nbins, row_stride);
    }
  /* For sparse DMatrix we have to store index of feature for each bin
     in index field to chose right offset. So offset is nullptr and index is not reduced */
  } else {
    sort_buff.Resize(qu, n_rows * row_stride * sizeof(uint32_t));
    SetIndexData<uint32_t, false>(qu, index.data<uint32_t>(), dmat, nbins, row_stride);
  }
}

}  // namespace common
}  // namespace sycl
}  // namespace xgboost