File: param.h

package info (click to toggle)
xgboost 3.0.4-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 13,848 kB
  • sloc: cpp: 67,603; python: 35,537; java: 4,676; ansic: 1,426; sh: 1,352; xml: 1,226; makefile: 204; javascript: 19
file content (164 lines) | stat: -rw-r--r-- 5,121 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
/*!
 * Copyright 2014-2024 by Contributors
 */
#ifndef PLUGIN_SYCL_TREE_PARAM_H_
#define PLUGIN_SYCL_TREE_PARAM_H_


#include <cmath>
#include <cstring>
#include <limits>
#include <string>
#include <vector>


#include "xgboost/parameter.h"
#include "xgboost/data.h"
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wtautological-constant-compare"
#include "../src/tree/param.h"
#pragma GCC diagnostic pop

#include <sycl/sycl.hpp>

namespace xgboost {
namespace sycl {
namespace tree {


/*! \brief Wrapper for necessary training parameters for regression tree to access on device */
/* The original structure xgboost::tree::TrainParam can't be used,
 * since std::vector are not copyable on sycl-devices.
 */
struct TrainParam {
  float min_child_weight;
  float reg_lambda;
  float reg_alpha;
  float max_delta_step;

  TrainParam() {}

  explicit TrainParam(const xgboost::tree::TrainParam& param) {
    reg_lambda = param.reg_lambda;
    reg_alpha = param.reg_alpha;
    min_child_weight = param.min_child_weight;
    max_delta_step = param.max_delta_step;
  }
};

template <typename GradType>
using GradStats = xgboost::detail::GradientPairInternal<GradType>;

/*!
 * \brief SYCL implementation of SplitEntryContainer for device compilation.
 *        Original structure cannot be used due 'cat_bits' field of type std::vector<uint32_t>,
 *        which is not device-copyable
 */
template<typename GradientT>
struct SplitEntryContainer {
  /*! \brief loss change after split this node */
  bst_float loss_chg {0.0f};
  /*! \brief split index */
  bst_feature_t sindex{0};
  bst_float split_value{0.0f};


  GradientT left_sum;
  GradientT right_sum;


  SplitEntryContainer() = default;


  friend std::ostream& operator<<(std::ostream& os, SplitEntryContainer const& s) {
    os << "loss_chg: " << s.loss_chg << ", "
       << "split index: " << s.SplitIndex() << ", "
       << "split value: " << s.split_value << ", "
       << "left_sum: " << s.left_sum << ", "
       << "right_sum: " << s.right_sum;
    return os;
  }
  /*!\return feature index to split on */
  bst_feature_t SplitIndex() const { return sindex & ((1U << 31) - 1U); }
  /*!\return whether missing value goes to left branch */
  bool DefaultLeft() const { return (sindex >> 31) != 0; }
  /*!
   * \brief decides whether we can replace current entry with the given statistics
   *
   *   This function gives better priority to lower index when loss_chg == new_loss_chg.
   *   Not the best way, but helps to give consistent result during multi-thread
   *   execution.
   *
   * \param new_loss_chg the loss reduction get through the split
   * \param split_index the feature index where the split is on
   */
  inline bool NeedReplace(bst_float new_loss_chg, unsigned split_index) const {
    if (::sycl::isinf(new_loss_chg)) {  // in some cases new_loss_chg can be NaN or Inf,
                                      // for example when lambda = 0 & min_child_weight = 0
                                      // skip value in this case
      return false;
    } else if (this->SplitIndex() <= split_index) {
      return new_loss_chg > this->loss_chg;
    } else {
      return !(this->loss_chg > new_loss_chg);
    }
  }
  /*!
   * \brief update the split entry, replace it if e is better
   * \param e candidate split solution
   * \return whether the proposed split is better and can replace current split
   */
  inline bool Update(const SplitEntryContainer &e) {
    if (this->NeedReplace(e.loss_chg, e.SplitIndex())) {
      this->loss_chg = e.loss_chg;
      this->sindex = e.sindex;
      this->split_value = e.split_value;
      this->left_sum = e.left_sum;
      this->right_sum = e.right_sum;
      return true;
    } else {
      return false;
    }
  }
  /*!
   * \brief update the split entry, replace it if e is better
   * \param new_loss_chg loss reduction of new candidate
   * \param split_index feature index to split on
   * \param new_split_value the split point
   * \param default_left whether the missing value goes to left
   * \return whether the proposed split is better and can replace current split
   */
  bool Update(bst_float new_loss_chg, unsigned split_index,
              bst_float new_split_value, bool default_left,
              const GradientT &left_sum,
              const GradientT &right_sum) {
    if (this->NeedReplace(new_loss_chg, split_index)) {
      this->loss_chg = new_loss_chg;
      if (default_left) {
        split_index |= (1U << 31);
      }
      this->sindex = split_index;
      this->split_value = new_split_value;
      this->left_sum = left_sum;
      this->right_sum = right_sum;
      return true;
    } else {
      return false;
    }
  }


  /*! \brief same as update, used by AllReduce*/
  inline static void Reduce(SplitEntryContainer &dst,         // NOLINT(*)
                            const SplitEntryContainer &src) { // NOLINT(*)
    dst.Update(src);
  }
};

template<typename GradType>
using SplitEntry = SplitEntryContainer<GradStats<GradType>>;

}  // namespace tree
}  // namespace sycl
}  // namespace xgboost
#endif  // PLUGIN_SYCL_TREE_PARAM_H_