1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
|
;;;; XLISP-STAT 2.1 Copyright (c) 1990, by Luke Tierney
;;;; Additions to Xlisp 2.1, Copyright (c) 1989 by David Michael Betz
;;;; You may give out copies of this software; for conditions see the file
;;;; COPYING included with this distribution.
(require "maximize")
(provide "bayes")
;;;;
;;;; Objects Representing Functions
;;;;
;; Generic C2 Functions
(defproto c2-function-proto '(f h num-derivs))
(defmeth c2-function-proto :isnew (f &optional (h .001) (num-derivs 0))
(setf (slot-value 'f) f)
(setf (slot-value 'h) (if (numberp h) (list h h) h))
(setf (slot-value 'num-derivs) num-derivs))
(defmeth c2-function-proto :f (&optional f)
(if f (setf (slot-value 'f) f))
(slot-value 'f))
(defmeth c2-function-proto :grad-h () (first (slot-value 'h)))
(defmeth c2-function-proto :hess-h () (second (slot-value 'h)))
(defmeth c2-function-proto :num-derivs () (slot-value 'num-derivs))
(defmeth c2-function-proto :value (x)
(let ((f (send self :f)))
(if (objectp f)
(send f :value x)
(let ((v (funcall f x)))
(if (consp v) (first v) v)))))
(defmeth c2-function-proto :gradient (x &optional (h (send self :grad-h)))
(let ((f (send self :f)))
(if (objectp f) (send f :gradient x h) (numgrad f x nil h))))
(defmeth c2-function-proto :hessian (x &optional (h (send self :hess-h)))
(let ((f (send self :f)))
(if (objectp f) (send f :hessian x h) (numhess f x nil h))))
(defmeth c2-function-proto :vals (x &optional (h (send self :hess-h)))
(let ((f (send self :f)))
(if (objectp f)
(send f :vals x h)
(let ((v (funcall f x)))
(if (consp v)
(if (= (length v) 3)
v
(list (first v) (second v) (send self :hessian x h)))
(list v (send self :gradient x h) (send self :hessian x h)))))))
(defmeth c2-function-proto :vals (x &optional (h (send self :hess-h)))
(let ((f (send self :f)))
(if (objectp f) (send f :vals x h) (numhess f x nil h t))))
;; Scaled C2 Functions
(defproto scaled-c2-function-proto '(scaling) () c2-function-proto)
;;**** allow function objects?
(defmeth scaled-c2-function-proto :isnew (f &optional
theta
sigma
(center 0)
(scale 1)
(h 0.001))
(let* ((value (funcall f theta))
(num-derivs (if (consp value) (- (length value) 1) -1))
(sigma-t (if (< 0 num-derivs) (transpose sigma))))
(labels ((scale (v)
(if v
(case num-derivs
(-1 (/ (- v center) scale))
(0 (/ (- (first v) center) scale))
(1 (list (/ (- (first v) center) scale)
(matmult sigma-t (/ (second v) scale))))
(2 (list (/ (- (first v) center) scale)
(matmult sigma-t (/ (second v) scale))
(matmult sigma-t (/ (third v) scale) sigma))))))
(sf (x) (scale (funcall f (ax+y sigma x theta t)))))
(call-next-method #'sf h num-derivs))))
;; Tilted C2 Functions
;; **** allow nil values?
(defproto tilt-function-proto '(tilt exptilt) () c2-function-proto)
(defmeth tilt-function-proto :isnew (&optional f (tilt .1) (h .001))
(call-next-method f h)
(setf (slot-value 'exptilt) t)
(setf (slot-value 'tilt) tilt))
(defmeth tilt-function-proto :tilt (&optional tilt)
(if tilt (setf (slot-value 'tilt) tilt))
(slot-value 'tilt))
(defmeth tilt-function-proto :exptilt (&optional (new nil set))
(if set (setf (slot-value 'exptilt) new))
(slot-value 'exptilt))
(defmeth tilt-function-proto :value (x)
(let ((f (send self :f))
(tilt (send self :tilt))
(exptilt (send self :exptilt)))
(flet ((value (f)
(let ((v (send f :value x)))
(if exptilt v (log v)))))
(* tilt (if (consp f) (apply #'+ (mapcar #'value f)) (value f))))))
(defmeth tilt-function-proto :gradient (x &optional (h (send self :grad-h)))
(let ((f (send self :f))
(tilt (send self :tilt))
(exptilt (send self :exptilt)))
(flet ((gradient (f)
(if exptilt
(send f :gradient x h)
(let ((v (send f :value x))
(grad (send f :gradient x h)))
(/ grad v)))))
(* tilt
(if (consp f) (apply #'+ (mapcar #'gradient f)) (gradient f))))))
(defmeth tilt-function-proto :hessian (x &optional (h (send self :hess-h)))
(let ((f (send self :f))
(tilt (send self :tilt))
(exptilt (send self :exptilt)))
(flet ((hessian (f)
(let* ((vals (send f :vals x h))
(v (first vals))
(grad (if exptilt (second vals) (/ (second vals) v)))
(hess (if exptilt (third vals) (/ (third vals) v))))
(if exptilt hess (- hess (outer-product grad grad))))))
(* tilt (if (consp f) (apply #'+ (mapcar #'hessian f)) (hessian f))))))
(defmeth tilt-function-proto :vals (x &optional (h (send self :hess-h)))
(let ((f (send self :f))
(tilt (send self :tilt))
(exptilt (send self :exptilt)))
(flet ((vals (f)
(let ((vals (send f :vals x h)))
(if exptilt
vals
(let* ((v (first vals))
(grad (/ (second vals) v))
(hess (- (/ (third vals) v)
(outer-product grad grad))))
(list (log v) grad hess))))))
(let ((v (if (consp f) (mapcar #'vals f) (vals f))))
(* tilt (if (consp f) (apply #'+ v) v))))))
;; scaled log posterior prototype
(defproto scaled-logpost-proto
'(tilt-object init-pars) () scaled-c2-function-proto)
(defmeth scaled-logpost-proto :isnew (f &optional
theta sigma
(center 0) (scale 1) (h .001))
(let* ((n (length theta))
(m (repeat 0 n))
(m-grad (repeat 0 n))
(m-hess (- (identity-matrix n)))
(pars (list m m-grad m-hess)))
(call-next-method f theta sigma center scale h)
(setf (slot-value 'init-pars) pars)
(setf (slot-value 'tilt-object) (send tilt-function-proto :new))))
(defmeth scaled-logpost-proto :log-laplace (g &optional
(count-limit 2) det-only (h .1))
(let* ((x (send self :tilt-newton g count-limit))
(vals (send self :vals x h))
(gvals (if g (send g :vals x h)))
(hess (if g (+ (third vals) (third gvals)) (third vals)))
(det (- (sum (log (diagonal (first (chol-decomp (- hess)))))))))
(if det-only
det
(if g (+ (first vals) (first gvals) det) (+ (first vals) det)))))
(defmeth scaled-logpost-proto :tilt-newton (tilt &optional (count-limit 2))
(let* ((pars (slot-value 'init-pars))
(mode (first pars))
(mode-grad (second pars))
(mode-hess (third pars)))
(flet ((gradhess (x initial)
(let ((gh (if (and initial mode-grad mode-hess)
(list mode-grad mode-hess)
(rest (send self :vals x)))))
(if tilt (+ gh (rest (send tilt :vals x))) gh)))
(newton-step (x gh) (- x (solve (second gh) (first gh)))))
(do* ((count 1 (+ count 1))
(gradhess (gradhess mode t) (gradhess x nil))
(x (newton-step mode gradhess) (newton-step x gradhess)))
((>= count count-limit) x)))))
(defmeth scaled-logpost-proto :tilt-laplace (g tilt &optional
(exptilt t) maxiter det-only h)
(let ((tilt-object (slot-value 'tilt-object)))
(send tilt-object :exptilt exptilt)
(send tilt-object :f g)
(send tilt-object :tilt tilt)
(send self :log-laplace tilt-object maxiter det-only h)))
(defmeth scaled-logpost-proto :tilt-mode (g tilt &key (exptilt t) (maxiter 2))
(let ((tilt-object (slot-value 'tilt-object)))
(send tilt-object :exptilt exptilt)
(send tilt-object :f g)
(send tilt-object :tilt tilt)
(send self :tilt-newton tilt-object maxiter)))
;;;;
;;;; Bayes Model Prototype
;;;;
(defproto bayes-model-proto '(bayes-internals))
;; initialization methods and constructor function
(defmeth bayes-model-proto :isnew (logpost mode &key
scale
(derivstep .001)
(verbose t)
(maximize t)
domain)
(send self :set-bayes-internals
logpost mode scale derivstep nil nil t domain)
(if maximize (send self :maximize verbose)))
(defun bayes-model (logpost mode &rest args &key (quick t) (print t))
"Args: (logpost mode &key scale derivstep (verbose t)
(quick t) (print t)))
LOGPOST computes the logposterior density. It should return the
function, or a list of the function value and gradient, or a list of
the function value, gradient and Hessian. MODE is an initial guess for
the mode. SCALE and DERIVSTEP are used for numerical derivatives and
scaling. VERBOSE controls printing of iteration information during
optimization, PRINT controls printing of summary information. If QUICK
is T the summary is based on first order approximations."
(let ((m (apply #'send bayes-model-proto :new logpost mode args)))
(if print (send m :display :quick quick))
m))
;; display method
(defmeth bayes-model-proto :display (&key (quick t))
(let* ((moments (send self (if quick :1stmoments :moments)))
(means (first moments))
(stdevs (second moments))
(p-names (send self :parameter-names)))
(if quick
(format t "~2%First Order Approximations to Posterior Moments:~2%")
(format t "~2%Approximate Posterior Moments:~2%"))
(mapcar #'(lambda (name mu sd)
#|(format t "~22a ~10g (~a)~%" name mu sd)|#
(format t "~a~25t~13,6g~40t(~,6g)~%" name mu sd))
p-names
means
stdevs)
(format t "~%")))
(defmeth bayes-model-proto :parameter-names ()
(let ((n (length (send self :mode))))
(mapcar #'(lambda (x) (format nil "Parameter ~d" x)) (iseq 0 (- n 1)))))
;; implementation-dependent access methods
(defmeth bayes-model-proto :set-bayes-internals (lp m s h mval ch max dom)
(setf (slot-value 'bayes-internals)
(vector lp m s h mval ch max dom)))
(defmeth bayes-model-proto :logpost (&optional new)
(let ((internals (slot-value 'bayes-internals)))
(when new
(setf (select internals 0) new)
(send self :needs-maximizing t))
(select internals 0)))
(defmeth bayes-model-proto :domain (&optional new)
(let ((internals (slot-value 'bayes-internals)))
(if new (setf (select internals 7) new))
(select internals 7)))
(defmeth bayes-model-proto :mode-values (&optional mode mval ch)
(let ((internals (slot-value 'bayes-internals)))
(when mode
(setf (select internals 1) mode)
(setf (select internals 4) mval)
(setf (select internals 5) ch))
(list (select internals 1)
(select internals 4)
(select internals 5))))
(defmeth bayes-model-proto :parameter-scale (&optional new)
(let ((internals (slot-value 'bayes-internals)))
(if new (setf (select internals 2) new))
(select internals 2)))
(defmeth bayes-model-proto :parameter-dimension ()
(length (select (slot-value 'bayes-internals) 1)))
(defmeth bayes-model-proto :derivstep ()
(select (slot-value 'bayes-internals) 3))
(defmeth bayes-model-proto :needs-maximizing (&optional (new nil set))
(let ((internals (slot-value 'bayes-internals)))
(if set (setf (select internals 6) new))
(select internals 6)))
;; Transformation-Related Methods
;; (These should be the only ones needing to be changed to handle
;; an internal parameter transformation; perhaps also :logpost)
;; **** fix to be more careful about use of functionp
(defun function-list (g &optional n)
(cond
((or (functionp g) (objectp g)) (list g))
((integerp g)
(if (null n)
(list #'(lambda (x) (elt x g)))
(let ((grad (make-array n :initial-element 0))
(hess (make-array (list n n) :initial-element 0)))
(setf (aref grad g) 1)
(list #'(lambda (x) (list (elt x g) grad hess))))))
(t (mapcar #'(lambda (x) (car (function-list x n))) g))))
(defmeth bayes-model-proto :mode ()
(if (send self :needs-maximizing) (send self :maximize))
(first (send self :mode-values)))
(defmeth bayes-model-proto :new-mode-guess (new)
(send self :needs-maximizing t)
(send self :mode-values new))
(defmeth bayes-model-proto :transformed-logpost ()
(if (send self :needs-maximizing) (send self :maximize))
(let* ((m-values (send self :mode-values))
(mode (first m-values))
(mval (second m-values))
(ch (third m-values))
(h (send self :derivstep))
(f (send self :logpost)))
(send scaled-logpost-proto :new f mode ch mval 1 h)))
;;**** need transformed domain here
(defmeth bayes-model-proto :transformed-functions (&optional g (c 0) (s 1))
(if (send self :needs-maximizing) (send self :maximize))
(let* ((m-values (send self :mode-values))
(mode (first m-values))
(mval (second m-values))
(ch (third m-values))
(h (send self :derivstep))
(n (length mode))
(g (function-list (if g g (iseq n)) n))
(c (if (numberp c) (repeat c (length g)) c))
(s (if (numberp s) (repeat s (length g)) s)))
(mapcar #'(lambda (g c s)
(send scaled-c2-function-proto :new g mode ch c s h))
g c s)))
;; computing methods
(defmeth bayes-model-proto :maximize (&optional (verbose 0))
(let* ((lp (send self :logpost))
(x (first (send self :mode-values)))
(scale (send self :parameter-scale))
(h (send self :derivstep))
(minfo (newtonmax lp x
:scale scale
:derivstep h
:verbose verbose
:return-derivs t))
(mode (first minfo))
(mval (second minfo))
(ch (first (chol-decomp (inverse (- (fourth minfo)))))))
(send self :mode-values mode mval ch)
(send self :needs-maximizing nil)
(send self :check-derivatives verbose)))
(defmeth bayes-model-proto :check-derivatives (&optional
(verbose 0)
(epsilon .00001))
(let* ((verbose (if (numberp verbose) (< 0 verbose) verbose))
(n (send self :parameter-dimension))
(tlp (send self :transformed-logpost))
(hess (send tlp :hessian (repeat 0 n)))
(needs-max (send self :needs-maximizing)))
(when (> (max (abs (+ hess (identity-matrix n)))) epsilon)
(if verbose (format t "Adjusting derivatives...~%"))
(let* ((ch (first (chol-decomp (- (inverse hess)))))
(mvals (send self :mode-values))
(m (matmult (third mvals) ch)))
(send self :mode-values (first mvals) (second mvals) m)
(if (not needs-max) (send self :needs-maximizing nil))
(if verbose
(let* ((tlp (send self :transformed-logpost))
(hess (send tlp :hessian (repeat 0 n))))
(if (> (max (abs (+ hess (identity-matrix n)))) epsilon)
(format t
"Derivatives may not be well-behaved.~%"))))))))
;; moments
(defmeth bayes-model-proto :1stmoments (&optional gfuns &key covar)
"Args: (&optional gfuns &key covar)
Computes first order approximations to posterior moments. GFUNS can be
a parameter index, list of indices, a function of the parameters or a
list of such functions. Returns a the list of first order approximate
means and standard deviations if COVAR is NIL. If COVAR is T the
covaraince is appended to the end of the result as well."
(if (send self :needs-maximizing) (send self :maximize))
(let* ((n (send self :parameter-dimension))
(x (repeat 0 n))
(g (send self :transformed-functions gfuns 0 1))
(grads (apply #'bind-columns
(mapcar #'(lambda (g) (send g :gradient x)) g)))
(mean (mapcar #'(lambda (g) (send g :value x)) g))
(cov (matmult (transpose grads) grads)))
(if covar
(list mean (sqrt (diagonal cov)) cov)
(list mean (sqrt (diagonal cov))))))
(defmeth bayes-model-proto :mgfmoments (&optional g &key covar
(mgfdel .1)
((:derivstep h) .1)
(maxiter 2))
(let* ((moms1 (send self :1stmoments g :covar covar))
(mean1 (first moms1))
(stdev1 (second moms1))
(cov1 (if covar (third moms1)))
(l-object (send self :transformed-logpost))
(g-objects (send self :transformed-functions g mean1 stdev1))
(ldet0 (send l-object :log-laplace nil maxiter t h)))
(labels ((lapdet (g tilt)
(- (send l-object :tilt-laplace g tilt t maxiter t h) ldet0))
(moms2 (m s g)
(let ((ldet1 (lapdet g mgfdel))
(ldet2 (lapdet g (- mgfdel))))
(list (+ m (* s (/ (- ldet1 ldet2) (* 2 mgfdel))))
(* s (sqrt (+ 1 (/ (+ ldet1 ldet2) (^ mgfdel 2))))))))
(covar (g mean-sd)
(let* ((mu (first mean-sd))
(sd (second mean-sd))
(cov (diagonal (^ sd 2)))
(var1 (^ stdev1 2))
(var (^ sd 2))
(rvdiff (/ (- var var1) var))
(tilt mgfdel)
(2tilt2 (* 2 (^ tilt 2)))
(negtilt (- tilt)))
(dotimes (i (length g) cov)
(dotimes (j i)
(let* ((g (select g (list i j)))
(rvdi (select rvdiff i))
(rvdj (select rvdiff j))
(sdi (select sd i))
(sdj (select sd j))
(ldt1 (lapdet g tilt))
(ldt2 (lapdet g negtilt))
(del2 (/ (+ ldt1 ldt2) 2tilt2))
(d (- del2 (* 0.5 rvdi) (* 0.5 rvdj)))
(c (+ (aref cov1 i j) (* d sdi sdj))))
(setf (aref cov i j) c)
(setf (aref cov j i) c)))))))
(let ((mean-sd (transpose (mapcar #'moms2 mean1 stdev1 g-objects))))
(if covar
(append mean-sd (list (covar g-objects mean-sd)))
mean-sd)))))
(defmeth bayes-model-proto :fullmoments (&optional g &key covar
((:derivstep h) .1)
(maxiter 2))
(let* ((moms1 (send self :1stmoments g))
(mean1 (first moms1))
(stdev1 (second moms1))
(l-object (send self :transformed-logpost))
(g-objects (send self :transformed-functions g 0 mean1))
(loglap0 (send l-object :log-laplace nil maxiter nil h)))
(labels ((loglap (g tilt)
(- (send l-object :tilt-laplace g tilt nil maxiter nil h)
loglap0))
(moms2 (g mu)
(let ((mu1 (exp (loglap g 1.0)))
(mu2 (exp (loglap g 2.0))))
(* mu (list mu1 (sqrt (- mu2 (^ mu1 2)))))))
(covar (g mean-sd)
(let* ((mu (/ (first mean-sd) mean1))
(sd (second mean-sd))
(cov (diagonal (^ sd 2))))
(dotimes (i (length g) cov)
(dotimes (j i)
(let* ((g (select g (list i j)))
(muij (exp (loglap g 1.0)))
(mui (select mu i))
(muj (select mu j))
(mu1i (select mean1 i))
(mu1j (select mean1 j))
(c (* (- muij (* mui muj)) mu1i mu1j)))
(setf (aref cov i j) c)
(setf (aref cov j i) c)))))))
(let ((mean-sd (transpose (mapcar #'moms2 g-objects mean1))))
(if covar
(append mean-sd (list (covar g-objects mean-sd)))
mean-sd)))))
(defmeth bayes-model-proto :2ndmoments (&rest args)
(apply #'send self :mgfmoments args))
(defmeth bayes-model-proto :moments (&rest args)
"Args: (&optional gfuns &key covar)
Computes second order approximations to posterior moments. GFUNS can be
a parameter index, list of indices, a function of the parameters or a
list of such functions. Returns a the list of second order approximate
means and standard deviations if COVAR is NIL. If COVAR is T the
covaraince is appended to the end of the result as well."
(apply #'send self :2ndmoments args))
;; margins
(defproto laplace-margin-proto '(logpost g x val i j a grad gval lu h))
(defmeth laplace-margin-proto :isnew (logpost g n k h)
(setf (slot-value 'logpost) logpost)
(setf (slot-value 'g) g)
(setf (slot-value 'x) (repeat 0 (+ n k)))
(setf (slot-value 'i) (iseq n))
(setf (slot-value 'j) (+ n (iseq k)))
(setf (slot-value 'a)
(make-array (list (+ n k) (+ n k)) :initial-element 0))
(setf (slot-value 'h) h)
(send self :adjust-internals t))
(defmeth laplace-margin-proto :adjust-internals (&optional initial)
(let* ((logpost (slot-value 'logpost))
(g (slot-value 'g))
(i (slot-value 'i))
(j (slot-value 'j))
(x (slot-value 'x))
(a (slot-value 'a))
(h (slot-value 'h))
(y (select x i))
(lambda (select x j))
(n (length y))
(vals (if initial
(list 0 (repeat 0 n) (- (identity-matrix n)))
(send logpost :vals y h)))
(val (first vals))
(grad (second vals))
(hess (third vals))
(gvals (mapcar #'(lambda (x) (send x :vals y h)) g))
(gval (mapcar #'first gvals))
(ggrad (mapcar #'second gvals))
(ghess (mapcar #'third gvals))
(ggradmat (apply #' bind-columns ggrad)))
(setf (slot-value 'val) val)
(setf (slot-value 'grad) (apply #'+ grad (* lambda ggrad)))
(setf (slot-value 'gval) gval)
(setf (select a i i) (apply #'+ hess (* lambda ghess)))
(setf (select a i j) ggradmat)
(setf (select a j i) (transpose ggradmat))
(setf (slot-value 'lu) (lu-decomp a))))
;; **** test for nonsingularity?
(defmeth laplace-margin-proto :move-to (target)
(let* ((x (slot-value 'x))
(grad (slot-value 'grad))
(gval (slot-value 'gval))
(lu (slot-value 'lu))
(next-x (- x (lu-solve lu (combine grad (- gval target))))))
(setf (slot-value 'x) next-x)
(send self :adjust-internals)))
(defmeth laplace-margin-proto :log-density (&optional profile)
(let ((val (slot-value 'val)))
(if profile
val
(let* ((lu (slot-value 'lu))
(nonsing (null (fourth lu))))
(if nonsing
(+ (* -0.5 (sum (log (abs (diagonal (first lu))))))
val))))))
;; ***** fix step choice
;; ***** Cut off at first nil?
(defmeth bayes-model-proto :log-margin1 (g x &key
((:derivstep h) .05)
(spline t)
profile)
(let* ((moms1 (send self :1stmoments g))
(mean1 (select (first moms1) 0))
(stdev1 (select (second moms1) 0))
(n (send self :parameter-dimension))
(l-ob (send self :transformed-logpost))
(g-obs (send self :transformed-functions g mean1 stdev1))
(xs (/ (- x mean1) stdev1))
(xlow (coerce (sort-data (select xs (which (<= xs 0)))) 'list))
(xhigh (coerce (sort-data (select xs (which (> xs 0)))) 'list)))
(flet ((margin (x)
(let ((margin (send laplace-margin-proto :new l-ob g-obs n 1 h)))
(flet ((nextmargin (x)
(send margin :move-to x)
(send margin :log-density profile)))
(mapcar #'nextmargin x)))))
(let* ((ylow (reverse (margin (reverse xlow))))
(yhigh (margin xhigh))
(x (append xlow xhigh))
(y (append ylow yhigh))
(i (which (mapcar #'numberp y)))
(xi (select x i))
(yi (select y i))
(xy (if spline (spline xi yi) (list xi yi))))
(list (+ mean1 (* stdev1 (first xy)))
(- (second xy) (log stdev1) (* 0.5 (log (* 2 pi)))))))))
(defmeth bayes-model-proto :margin1 (g x &key
(derivstep .05)
(spline t)
profile)
"Args: (g x &key (:derivstep .05) (spline t) profile)
Computes Laplace approximation to marginal posterior density of G at
points X. G can be an index or a function of the parameter vector. X
is a sequence that should include the modal value of G. If SPLINE is
true the log density is splined. If PROFILE is true, a profile of the
posterior is returned."
(let* ((logmar (send self :log-margin1 g x
:derivstep derivstep
:spline spline
:profile profile)))
(list (first logmar) (exp (second logmar)))))
;;**** allow domain test function
(defmeth bayes-model-proto :impsample (&optional g &key (n 100) (df 2))
(let* ((l-ob (send self :transformed-logpost))
(g-obs (send self :transformed-functions g))
(k (send self :parameter-dimension))
(v (chisq-rand n df))
(z (* (normal-rand (repeat k n)) (sqrt (/ df v))))
(c (- (log-gamma (/ (+ k df) 2))
(log-gamma (/ df 2))
(* (/ k 2) (log (/ df 2))))))
(flet ((w (z)
(let ((lp (send l-ob :value z))
(lt (* -0.5 (+ k df) (log (+ 1 (/ (sum (* z z)) df))))))
(if (realp lp) (exp (- lp lt c)) 0)))
(gvals (z) (mapcar #'(lambda (g) (send g :value z)) g-obs)))
(list (mapcar #'gvals z) (mapcar #'w z)))))
(defmeth bayes-model-proto :impmoments (&optional g &key (n 100) (df 2))
(let* ((impsample (send self :impsample g :n n :df df))
(means (/ (reduce #'+ (* (first impsample) (second impsample)))
(reduce #'+ (second impsample))))
(x (mapcar #'(lambda (z) (^ (- z means) 2)) (first impsample)))
(vars (/ (reduce #'+ (* x (second impsample)))
(reduce #'+ (second impsample)))))
(list means (sqrt vars))))
|