1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
|
;;;; maxmize.lsp -- maximization and derivative code for XLISP-STAT
;;;; XLISP-STAT 2.1 Copyright (c) 1990, by Luke Tierney
;;;; Additions to Xlisp 2.1, Copyright (c) 1989 by David Michael Betz
;;;; You may give out copies of this software; for conditions see the
;;;; file COPYING included with this distribution.
(provide "maximize")
(in-package "XLISP")
(export '(numgrad numhess newtonmax nelmeadmax))
;;**** allow typf to be specified?
(defparameter *default-derivative-step* (^ machine-epsilon (/ 1.0 6.0)))
(defmacro make-fundata () `(make-array 7))
(defmacro fundata-f (fd) `(aref ,fd 0))
(defmacro fundata-arg (fd) `(aref ,fd 1))
(defmacro fundata-typx (fd) `(aref ,fd 2))
(defmacro fundata-fsum (fd) `(aref ,fd 3))
(defmacro fundata-n (fd) `(aref ,fd 4))
(defmacro fundata-changesign (fd) `(aref ,fd 5))
(defmacro fundata-h (fd) `(aref ,fd 6))
(defmacro get-function-value (f x arg cs)
(let ((xsym (gensym "X"))
(asym (gensym "ARG")))
`(let ((,xsym ,x)
(,asym ,arg))
(replace ,asym ,xsym)
(let* ((v (funcall ,f ,asym))
(fv (if (consp v) (first v) v)))
(if ,cs (- fv) fv)))))
(defun change-array-sign (x)
(let ((x (compound-data-seq x)))
(if (typep x '(vector float))
(blas-dscal (length x) -1.0 x 0 1)
(dotimes (i (length x)) (setf (aref x i) (- (aref x i)))))))
;;;;
;;;; Functions Evaluation Routines
;;;;
;;;
;;; All Hessian evaluations by numerical derivatives assume the gradient is
;;; evaluated first at the same location. The results are cached away.
;;;
(defun make-function-data (f n changesign h typx)
(let ((data (make-fundata)))
(setf (fundata-f data) f)
(setf (fundata-arg data) (make-list n))
(setf (fundata-typx data)
(make-array n :element-type 'float :initial-element 1.0))
(setf (fundata-fsum data) (make-array n :element-type 'float))
(setf (fundata-n data) n)
(setf (fundata-changesign data) changesign)
(setf (fundata-h data) (if (and h (> h 0.0)) h *default-derivative-step*))
(when typx
(let ((newtypx (fundata-typx data)))
(dotimes (i n)
(let ((txi (elt typx i)))
(setf (aref newtypx i) (if (> txi 0.0) txi 1.0))))))
data))
(defun eval-function (func x grad hess)
(let* ((f (fundata-f func))
(arg (fundata-arg func))
(typx (fundata-typx func))
(fsum (fundata-fsum func))
(n (fundata-n func))
(cs (fundata-changesign func))
(h (fundata-h func)))
(replace arg x)
(let* ((result (funcall f arg))
(val (if (consp result) (car result) result)))
(when result
(let ((fderivs (if (consp result) (- (length result) 1) 0)))
(when cs (setf val (- val)))
(when grad
(cond
((> fderivs 0)
(replace grad (car (cdr result)))
(when cs (change-array-sign grad)))
(t
(cmpgrad n x grad fsum func h typx))))
(when hess
(cond
((= fderivs 2)
(replace (compound-data-seq hess)
(compound-data-seq (car (cdr (cdr result)))))
(when cs (change-array-sign hess)))
(t
;;**** fix this for hess from grad?
(when (and (= fderivs 1) (null grad))
;; kludge to get fsum for analytic gradients
(cmpgrad n x fsum fsum func h typx))
(cmphess n x hess val fsum func h typx))))))
val)))
(defun cmpgrad (n x grad fsum ffun h typx)
(let ((f (fundata-f ffun))
(arg (fundata-arg ffun))
(cs (fundata-changesign ffun)))
(dotimes (i n)
(let ((old-xi (aref x i))
(hi (if typx (* (aref typx i) h) h))
(f1 0.0)
(f2 0.0))
(setf (aref x i) (+ old-xi hi))
(setf f1 (get-function-value f x arg cs))
(setf (aref x i) (- old-xi hi))
(setf f2 (get-function-value f x arg cs))
(setf (aref x i) old-xi)
(setf (aref grad i) (/ (- f1 f2) (* 2.0 hi)))
(setf (aref fsum i) (+ f1 f2))))))
(defun cmphess (n x hess f fsum ffun h typx)
(let ((fun (fundata-f ffun))
(arg (fundata-arg ffun))
(cs (fundata-changesign ffun)))
(dotimes (i n)
(let ((hi (if typx (* (aref typx i) h) h))
(old-xi (aref x i)))
(setf (aref hess i i) (/ (- (aref fsum i) (* 2 f)) (* hi hi)))
(dotimes (j i)
(let ((hj (if typx (* (aref typx j) h) h))
(old-xj (aref x j))
(f1 0.0)
(f2 0.0))
(setf (aref x i) (+ old-xi hi))
(setf (aref x j) (+ old-xj hj))
(setf f1 (get-function-value fun x arg cs))
(setf (aref x i) (- old-xi hi))
(setf (aref x j) (- old-xj hj))
(setf f2 (get-function-value fun x arg cs))
(setf (aref x i) old-xi)
(setf (aref x j) old-xj)
(let ((hij (/ (- (+ (* 2 f) f1 f2) (aref fsum i) (aref fsum j))
(* 2.0 hi hj))))
(setf (aref hess i j) hij)
(setf (aref hess j i) hij))))))))
(defun numgrad (f x &optional scale h all cs)
(let* ((n (length x))
(fd (make-function-data f n cs h scale))
(xv (make-array n :initial-contents x))
(grad (make-array n))
(fv (eval-function fd xv grad nil)))
(coerce grad 'list)))
(defun numhess (f x &optional scale h all cs)
(let* ((n (length x))
(fd (make-function-data f n cs h scale))
(xv (make-array n :initial-contents x))
(grad (make-array n))
(hess (make-array (list n n)))
(fv (eval-function fd xv grad hess)))
(if all (list fv (coerce grad 'list) hess) hess)))
;;;;
;;;; Nonlinear optimization modules adapted from Dennis and Schnabel,
;;;; "Numerical Methods for Unconstrained Optimization and Nonlinear
;;;; Equations."
;;;;
;;;;
;;;; Mode Internals Data
;;;;
(defmacro make-internals () `(make-array 7))
(defmacro internals-f (i) `(aref ,i, 0))
(defmacro internals-x (i) `(aref ,i, 1))
(defmacro internals-scale (i) `(aref ,i, 2))
(defmacro internals-delf (i) `(aref ,i, 3))
(defmacro internals-hessf (i) `(aref ,i, 4))
(defmacro internals-ipars (i) `(aref ,i, 5))
(defmacro internals-dpars (i) `(aref ,i, 6))
(defmacro make-ipars () `(make-array 11))
(defmacro ipars-n (ipars) `(aref ,ipars 0))
(defmacro ipars-maxiter (i) `(aref ,i 1))
(defmacro ipars-backtrack (i) `(aref ,i 2))
(defmacro ipars-verbose (i) `(aref ,i 3))
(defmacro ipars-vals-suppl (i) `(aref ,i 4))
(defmacro ipars-count (i) `(aref ,i 5))
(defmacro ipars-termcode (i) `(aref ,i 6))
(defmacro ipars-change-sign (i) `(aref ,i 7))
(defmacro ipars-maxtaken (i) `(aref ,i 8))
(defmacro ipars-consecmax (i) `(aref ,i 9))
(defmacro ipars-retcode (i) `(aref ,i 10))
(defmacro make-dpars () `(make-array 8))
(defmacro dpars-typf(d) `(aref ,d 0))
(defmacro dpars-derivstep (d) `(aref ,d 1))
(defmacro dpars-gradtol (d) `(aref ,d 2))
(defmacro dpars-steptol (d) `(aref ,d 3))
(defmacro dpars-maxstep (d) `(aref ,d 4))
(defmacro dpars-hessadd (d) `(aref ,d 5))
(defmacro dpars-f (d) `(aref ,d 6))
(defmacro dpars-new-f (d) `(aref ,d 7))
(defun newinternals (f x scale h)
(let ((n (length x))
(ip (make-ipars))
(dp (make-dpars))
(internals (make-internals)))
(setf (ipars-n ip) n)
(setf (ipars-maxiter ip ) -1)
(setf (ipars-backtrack ip) t)
(setf (ipars-verbose ip) 0)
(setf (ipars-vals-suppl ip) nil)
(setf (ipars-count ip) 0)
(setf (ipars-termcode ip) 0)
(setf (ipars-change-sign ip) t)
(setf (dpars-typf dp) 1.0)
(setf (dpars-derivstep dp) h)
(setf (dpars-gradtol dp) -1.0)
(setf (dpars-steptol dp) -1.0)
(setf (dpars-maxstep dp) -1.0)
(setf (dpars-hessadd dp) 0.0)
(setf (internals-f internals) f)
(setf (internals-x internals)
(make-array n :element-type 'float :initial-contents x))
(setf (internals-scale internals)
(if scale
(make-array n :element-type 'float :initial-contents scale)
(make-array n :element-type 'float :initial-element 1.0)))
(setf (internals-ipars internals) ip)
(setf (internals-dpars internals) dp)
(setf (internals-delf internals) (make-array n :element-type 'float))
(setf (internals-hessf internals)
(make-array (list n n) :element-type 'float))
internals))
;;;;
;;;; Definitions and Globals
;;;;
(defparameter *init-grad-frac* 0.001)
(defparameter *consec-max-limit* 5)
(defparameter *alpha* 0.0001)
(defparameter *max-step-factor* 1000)
(defparameter *gradtol-power* (/ 1.0 3.0))
(defparameter *steptol-power* (/ 2.0 3.0))
(defparameter *itnlimit* 100)
(defparameter *verbose* 0)
(defparameter *use-search* t)
(defparameter *termcodes*
(vector "not yet terminated"
"gradient size is less than gradient tolerance"
"step size is less than step tolerance"
"no satisfactory step found in backtracking"
"iteration limit exceeded"
"maximum size step taken 5 iterations in a row"))
;;;;
;;;; Iteration Data
;;;;
(defmacro make-iteration () `(make-array 12))
(defmacro iteration-ffun (i) `(aref ,i 0))
(defmacro iteration-x (i) `(aref ,i 1))
(defmacro iteration-new-x (i) `(aref ,i 2))
(defmacro iteration-sx (i) `(aref ,i 3))
(defmacro iteration-delf (i) `(aref ,i 4))
(defmacro iteration-new-delf (i) `(aref ,i 5))
(defmacro iteration-qnstep (i) `(aref ,i 6))
(defmacro iteration-L (i) `(aref ,i 7))
(defmacro iteration-hessf (i) `(aref ,i 8))
(defmacro iteration-work (i) `(aref ,i 9))
(defmacro iteration-ip (i) `(aref ,i 10))
(defmacro iteration-dp (i) `(aref ,i 11))
(defmacro iteration-n (i) `(ipars-n (iteration-ip ,i)))
(defmacro iteration-itnlimit (i) `(ipars-maxiter (iteration-ip ,i)))
(defmacro iteration-backtrack (i) `(ipars-backtrack (iteration-ip ,i)))
(defmacro iteration-verbose (i) `(ipars-verbose (iteration-ip ,i)))
(defmacro iteration-vals-suppl (i) `(ipars-vals-suppl (iteration-ip ,i)))
(defmacro iteration-count (i) `(ipars-count (iteration-ip ,i)))
(defmacro iteration-termcode (i) `(ipars-termcode (iteration-ip ,i)))
(defmacro iteration-maxtaken (i) `(ipars-maxtaken (iteration-ip ,i)))
(defmacro iteration-consecmax (i) `(ipars-consecmax (iteration-ip ,i)))
(defmacro iteration-retcode (i) `(ipars-retcode (iteration-ip ,i)))
(defmacro iteration-change-sign (i) `(ipars-change-sign (iteration-ip ,i)))
(defmacro iteration-typf (i) `(dpars-typf (iteration-dp ,i)))
(defmacro iteration-gradtol (i) `(dpars-gradtol (iteration-dp ,i)))
(defmacro iteration-steptol (i) `(dpars-steptol (iteration-dp ,i)))
(defmacro iteration-maxstep (i) `(dpars-maxstep (iteration-dp ,i)))
(defmacro iteration-hessadd (i) `(dpars-hessadd (iteration-dp ,i)))
(defmacro iteration-f (i) `(dpars-f (iteration-dp ,i)))
(defmacro iteration-new-f (i) `(dpars-new-f (iteration-dp ,i)))
;;;;
;;;; Stopping Criteria
;;;;
(defun gradsize (iter new)
(let ((f (iteration-f iter))
(typf (iteration-typf iter))
(x (iteration-x iter))
(sx (iteration-sx iter))
(delf (if new (iteration-new-delf iter) (iteration-delf iter))))
(uncmin-gradsize delf x sx (max (abs f) typf))))
(defun incrsize (iter)
(let ((n (iteration-n iter))
(new-x (iteration-new-x iter))
(x (iteration-x iter))
(sx (iteration-sx iter))
(work (iteration-work iter)))
(blas-dcopy n x 0 1 work 0 1)
(blas-daxpy n -1.0 new-x 0 1 work 0 1)
(uncmin-maxrelsize work x sx)))
(defun stoptest0 (iter)
(setf (iteration-consecmax iter) 0)
(setf (iteration-termcode iter)
(if (<= (gradsize iter nil)
(* *init-grad-frac* (iteration-gradtol iter)))
1
0))
(iteration-termcode iter))
(defun stoptest (iter)
(let ((retcode (iteration-retcode iter))
(gradtol (iteration-gradtol iter))
(steptol (iteration-steptol iter))
(count (iteration-count iter))
(itnlimit (iteration-itnlimit iter))
(maxtaken (iteration-maxtaken iter))
(consecmax (iteration-consecmax iter))
(termcode 0))
(cond
((= retcode 1) (setf termcode 3))
((<= (gradsize iter t) gradtol) (setf termcode 1))
((<= (incrsize iter) steptol) (setf termcode 2))
((>= count itnlimit) (setf termcode 4))
(maxtaken (incf consecmax)
(if (>= consecmax *consec-max-limit*) (setf termcode 5)))
(t (setf consecmax 0)))
(setf (iteration-consecmax iter) consecmax)
(setf (iteration-termcode iter) termcode)
termcode))
;;;;
;;;; Function and Derivative Evaluation
;;;;
(defun eval-funval (iter)
(setf (iteration-f iter)
(eval-function (iteration-ffun iter) (iteration-x iter) nil nil)))
(defun eval-next-funval (iter)
(setf (iteration-new-f iter)
(eval-function (iteration-ffun iter) (iteration-new-x iter) nil nil)))
(defun eval-gradient (iter)
(eval-function (iteration-ffun iter)
(iteration-x iter)
(iteration-delf iter)
nil))
(defun eval-next-gradient (iter)
(eval-function (iteration-ffun iter)
(iteration-new-x iter)
(iteration-new-delf iter)
nil))
(defun eval-hessian (iter)
(eval-function (iteration-ffun iter)
(iteration-x iter)
nil
(iteration-hessf iter)))
;;;;
;;;; Backtracking Line Search
;;;;
;;;; Modified to quit after *itnlimit* steps in case regular termination
;;;; doesn't work (because of NaN's).
(defun linesearch (iter)
(let ((n (iteration-n iter))
(x (iteration-x iter))
(new-x (iteration-new-x iter))
(qnstep (iteration-qnstep iter)))
(cond
((not (iteration-backtrack iter))
(setf (iteration-maxtaken iter) nil)
(blas-dcopy n x 0 1 new-x 0 1)
(blas-daxpy n 1.0 qnstep 0 1 new-x 0 1)
(eval-next-funval iter)
(setf (iteration-retcode iter) 0))
(t
(let ((maxstep (iteration-maxstep iter))
(delf (iteration-delf iter))
(sx (iteration-sx iter))
(work (iteration-work iter)))
(setf (iteration-maxtaken iter) nil)
(setf (iteration-retcode iter) 2)
(dotimes (i n)
(setf (aref work i) (* (aref sx i) (aref qnstep i))))
(let ((newtlen (blas-dnrm2 n work 0 1)))
(when (> newtlen maxstep)
(dotimes (i n)
(setf (aref qnstep i)
(* (aref qnstep i) (/ maxstep newtlen))))
(setf newtlen maxstep))
(let* ((initslope (blas-ddot n delf 0 1 qnstep 0 1))
(rellength (uncmin-maxrelsize qnstep x sx))
(minlambda (if (= rellength 0.0)
2.0
(/ (iteration-steptol iter) rellength)))
(lambda 1.0)
(lambdaprev 1.0)
(fprev 1.0)
(count 0))
(loop
(incf count)
(when (<= (iteration-retcode iter) 1) (return))
(blas-dcopy n x 0 1 new-x 0 1)
(blas-daxpy n lambda qnstep 0 1 new-x 0 1)
(eval-next-funval iter)
(cond
((<= (iteration-new-f iter)
(+ (iteration-f iter) (* *alpha* lambda initslope)))
(setf (iteration-retcode iter) 0)
(when (and (= lambda 1.0) (> newtlen (* 0.99 maxstep)))
(setf (iteration-maxtaken iter) t)))
((or (< lambda minlambda) (>= count *itnlimit*))
(setf (iteration-retcode iter) 1)
(setf (iteration-new-f iter) (iteration-f iter))
(blas-dcopy n x 0 1 new-x 0 1))
(t
(setf lambdatemp
(uncmin-linesearch (iteration-f iter) initslope
lambda (iteration-new-f iter)
lambdaprev fprev))
(setf lambdaprev lambda)
(setf fprev (iteration-new-f iter))
(setf lambda (max (* 0.1 lambda) lambdatemp))
(when (> (iteration-verbose iter) 0)
(format t "Backtracking: lambda = ~,6g~%"
lambda))))))))))))
;;;;
;;;; Status Printing Functions
;;;;
(defun print-header (iter)
(when (< 0 (iteration-verbose iter))
(format t "Iteration ~d.~%" (iteration-count iter))))
(defun print-status (iter)
(let ((n (iteration-n iter))
(f (iteration-f iter))
(x (iteration-x iter))
(delf (iteration-delf iter))
(hessf (iteration-hessf iter))
(verbose (iteration-verbose iter))
(change-sign (iteration-change-sign iter))
(tcode (iteration-termcode iter)))
(when (< 0 verbose)
(format t "Criterion value = ~,6g~%" (if change-sign (- f) f))
(when (< 1 verbose)
(format t "Location = <")
(dotimes (i n)
(format t (if (< i (- n 1)) "~,6g " "~,6g>~%") (aref x i)))
(when (< 2 verbose)
(format t "Gradient = <")
(dotimes (i n)
(let ((di (aref delf i)))
(format t
(if (< i (- n 1)) "~,6g " "~,6g>~%")
(if change-sign (- di) di))))
(when (< 3 verbose)
(format t "Hessian:~%")
(dotimes (i n)
(dotimes (j n)
(let ((hij (aref hess (+ (* i n) j))))
(format t
(if (< j (- n 1)) "~,6g " "~,6g~%")
(if change-sign (- hij) hij))))))))
(when (/= tcode 0)
(format t
"Reason for termination: ~a.~%"
(aref *termcodes* tcode))))))
;;;;
;;;; Iteration Driver
;;;;
(defun findqnstep (iter)
(let ((n (iteration-n iter))
(sx (iteration-sx iter))
(hessf (iteration-hessf iter))
(L (iteration-L iter))
(delf (iteration-delf iter))
(qnstep (iteration-qnstep iter)))
(setf (iteration-hessadd iter) (uncmin-modelhess sx hessf L))
(uncmin-cholsolve delf L qnstep)))
(defun iterupdate (iter)
(let ((n (iteration-n iter)))
(setf (iteration-f iter) (iteration-new-f iter))
(blas-dcopy n (iteration-new-x iter) 0 1 (iteration-x iter) 0 1)
(blas-dcopy n (iteration-new-delf iter) 0 1 (iteration-delf iter) 0 1)))
;;;;
;;;; External Interface Routines
;;;;
(defun mindriver (iter trfun)
(setf (iteration-consecmax iter) 0)
(setf (iteration-count iter) 0)
(setf (iteration-termcode iter) 0)
(unless (iteration-vals-suppl iter)
(eval-funval iter)
(eval-gradient iter)
(eval-hessian iter))
(stoptest0 iter)
(print-header iter)
(print-status iter)
(loop
(when (/= 0 (iteration-termcode iter)) (return))
(incf (iteration-count iter))
(print-header iter)
(findqnstep iter)
(linesearch iter)
(eval-next-gradient iter)
(stoptest iter)
(iterupdate iter)
(eval-hessian iter)
(print-status iter)
(when trfun (funcall trfun))))
(defun minresultstring (code)
(if (<= 0 code (- (length *termcodes*) 1))
(aref *termcodes* code)
"unknown return code"))
(defun minsetup (ffun x typx ip dp delf hessf)
(let ((iter (make-iteration))
(n (ipars-n ip)))
(setf (iteration-ip iter) ip)
(setf (iteration-dp iter) dp)
(setf (iteration-ffun iter) ffun)
(setf (iteration-x iter) x)
(setf (iteration-new-x iter) (make-array n :element-type 'float))
(setf (iteration-sx iter)
(make-array n :element-type 'float :initial-element 1.0))
(setf (iteration-delf iter) delf)
(setf (iteration-new-delf iter) (make-array n :element-type 'float))
(setf (iteration-qnstep iter) (make-array n :element-type 'float))
(when typx
(let ((sx (iteration-sx iter)))
(dotimes (i n)
(let ((txi (aref typx i)))
(if (< 0.0 txi)
(setf (aref sx i) (/ 1.0 txi)))))))
(setf (iteration-L iter) (make-array (list n n) :element-type 'float))
(setf (iteration-hessf iter) hessf)
(setf (iteration-work iter) (make-array n :element-type 'float))
(when (< (iteration-verbose iter) 0)
(setf (iteration-verbose iter) *verbose*))
(when (< (iteration-itnlimit iter) 0)
(setf (iteration-itnlimit iter) *itnlimit*))
(when (<= (iteration-typf iter) 0.0)
(setf (iteration-typf iter) 1.0))
(when (<= (iteration-gradtol iter) 0.0)
(setf (iteration-gradtol iter) (^ machine-epsilon *gradtol-power*)))
(when (<= (iteration-steptol iter) 0.0)
(setf (iteration-steptol iter) (^ machine-epsilon *steptol-power*)))
(when (<= (iteration-maxstep iter) 0.0)
(let ((dx (iteration-x iter))
(sx (iteration-sx iter))
(w (iteration-work iter)))
(dotimes (i n)
(setf (aref w i) (* (aref dx i) (aref sx i))))
(let ((nx0 (blas-dnrm2 n w 0 1))
(nsx (blas-dnrm2 n sx 0 1)))
(setf (iteration-maxstep iter)
(* *max-step-factor* (max nx0 nsx))))))
iter))
;;;;
;;;; Mode Info Accessors
;;;;
(defmacro mode-info-f () `(aref (slot-value 'internals) 0))
(defmacro mode-info-x () `(aref (slot-value 'internals) 1))
(defmacro mode-info-scale () `(aref (slot-value 'internals) 2))
(defmacro mode-info-delf () `(aref (slot-value 'internals) 3))
(defmacro mode-info-hessf () `(aref (slot-value 'internals) 4))
(defmacro mode-info-ipars () `(aref (slot-value 'internals) 5))
(defmacro mode-info-dpars () `(aref (slot-value 'internals) 6))
(defmacro ipars-n (ipars) `(aref ,ipars 0))
(defmacro ipars-maxiter (ipars) `(aref ,ipars 1))
(defmacro ipars-backtrack (ipars) `(aref ,ipars 2))
(defmacro ipars-verbose (ipars) `(aref ,ipars 3))
(defmacro dpars-derivstep (dpars) `(aref ,dpars 1))
(defmacro dpars-f (dpars) `(aref ,dpars 6))
;;;;
;;;; Mode Info Prototype
;;;;
(defproto minfo-proto '(internals))
(defmeth minfo-proto :isnew (f x &key scale (derivstep -1.0))
(setf (slot-value 'internals) (newinternals f x scale derivstep))
nil)
(defmeth minfo-proto :maximize (&optional verbose trfun)
(let* ((internals (slot-value 'internals))
(f (internals-f internals))
(x (internals-x internals))
(scale (internals-scale internals))
(ip (internals-ipars internals))
(dp (internals-dpars internals))
(delf (internals-delf internals))
(hessf (internals-hessf internals))
(n (ipars-n ip))
(func (make-function-data f n t (dpars-derivstep dp) scale))
(iter (minsetup func x scale ip dp delf hessf)))
(when (and verbose (integerp verbose))
(setf (ipars-verbose ip) verbose))
(when (> (ipars-verbose ip) 0)
(format t "maximizing...~%"))
(mindriver iter trfun)
(setf (ipars-vals-suppl ip) t)
(minresultstring (ipars-termcode ip))))
(defmeth minfo-proto :x () (coerce (mode-info-x) 'list))
(defmeth minfo-proto :scale () (coerce (mode-info-scale) 'list))
(defmeth minfo-proto :derivstep () (dpars-derivstep (mode-info-dpars)))
(defmeth minfo-proto :f (&optional (val nil set))
(when set
(send self :set-no-vals-supplied)
(setf (mode-info-f) val))
(mode-info-f))
(defmeth minfo-proto :fvals ()
(let* ((n (ipars-n (mode-info-ipars)))
(val (dpars-f (mode-info-dpars)))
(grad (coerce (mode-info-delf) 'list))
(hess (make-array (list n n))))
(replace (compound-data-seq hess)
(compound-data-seq (mode-info-hessf)))
(list val grad hess)))
(defmeth minfo-proto :copy ()
(let ((obj (make-object minfo-proto))
(internals (copy-seq (slot-value 'internals))))
(dotimes (i (length internals))
(let ((x (aref internals i)))
(if (sequencep x)
(setf (aref internals i) (copy-seq x)))))
(send obj :add-slot 'internals internals)
obj))
(defmeth minfo-proto :derivscale ()
(let* ((x (send self :x))
(step (^ machine-epsilon (/ 1 6)))
(hess (numhess (send self :f) x (send self :scale) step))
(scale (pmax (abs x) (sqrt (abs (/ (diagonal hess)))))))
(setf hess (numhess (send self :f) x scale step))
(setf scale (pmax (abs x) (sqrt (abs (/ (diagonal hess))))))
(setf (mode-info-scale) (coerce scale '(vector float)))
(setf (dpars-derivstep (mode-info-dpars)) step)))
(defmeth minfo-proto :verbose (&optional (val nil set))
(when set
(setf (ipars-verbose (mode-info-ipars))
(cond ((integerp val) val)
((null val) 0)
(t 1))))
(ipars-verbose (mode-info-ipars)))
(defmeth minfo-proto :backtrack (&optional (val nil set))
(if set (setf (ipars-backtrack (mode-info-ipars)) (if val 1 0)))
(ipars-backtrack (mode-info-ipars)))
(defmeth minfo-proto :maxiter (&optional (val nil set))
(if set (setf (ipars-maxiter (mode-info-ipars))
(if (integerp val) val -1)))
(ipars-maxiter (mode-info-ipars)))
;;;;
;;;;
;;;; Newton's Method with Backtracking
;;;;
;;;;
(defun newtonmax (f start &key
scale
(derivstep -1.0)
(count-limit -1)
(verbose 1)
return-derivs
trace)
"Args:(f start &key scale derivstep (verbose 1) return-derivs)
Maximizes F starting from START using Newton's method with backtracking.
If RETURN-DERIVS is NIL returns location of maximum; otherwise returns
list of location, unction value, gradient and hessian at maximum.
SCALE should be a list of the typical magnitudes of the parameters.
DERIVSTEP is used in numerical derivatives and VERBOSE controls printing
of iteration information. COUNT-LIMIT limits the number of iterations"
(let ((verbose (if verbose (if (integerp verbose) verbose 1) 0))
(minfo (send minfo-proto :new f start
:scale scale :derivstep derivstep)))
(send minfo :maxiter count-limit)
(send minfo :derivscale)
(send minfo :maximize
verbose
(if trace #'(lambda () (funcall trace minfo))))
(if return-derivs
(cons (send minfo :x) (- (send minfo :fvals)))
(send minfo :x))))
;;;;
;;;;
;;;; Nelder-Mead Simplex Method
;;;;
;;;;
(defun nelmeadmax (f start &key
(size 1)
(epsilon (sqrt machine-epsilon))
(count-limit 500)
(verbose t)
(alpha 1.0)
(beta 0.5)
(gamma 2.0)
(delta 0.5))
"Args: (f start &key (size 1) (epsilon (sqrt machine-epsilon))
(count-limit 500) (verbose t) alpha beta gamma delta)
Maximizes F using the Nelder-Mead simplex method. START can be a
starting simplex - a list of N+1 points, with N=dimension of problem,
or a single point. If start is a single point you should give the
size of the initial simplex as SIZE, a sequence of length N. Default is
all 1's. EPSILON is the convergence tolerance. ALPHA-DELTA can be used to
control the behavior of simplex algorithm."
(let ((s (send simplex-proto :new f start size)))
(do ((best (send s :best-point) (send s :best-point))
(count 0 (+ count 1))
next)
((or (< (send s :relative-range) epsilon) (>= count count-limit))
(if (and verbose (>= count count-limit))
(format t "Iteration limit exceeded.~%"))
(send s :point-location (send s :best-point)))
(setf next (send s :extrapolate-from-worst (- alpha)))
(if (send s :is-worse best next)
(setf next (send s :extrapolate-from-worst gamma))
(when (send s :is-worse next (send s :second-worst-point))
(setf next (send s :extrapolate-from-worst beta))
(if (send s :is-worse next (send s :worst-point))
(send s :shrink-to-best delta))))
(if verbose
(format t "Value = ~g~%"
(send s :point-value (send s :best-point)))))))
;;;
;;; Simplex Prototype
;;;
(defproto simplex-proto '(f simplex))
;;;
;;; Simplex Points
;;;
(defmeth simplex-proto :make-point (x)
(let ((f (send self :f)))
(if f
(let ((val (funcall f x)))
(cons (if (consp val) (car val) val) x))
(cons nil x))))
(defmeth simplex-proto :point-value (x) (car x))
(defmeth simplex-proto :point-location (x) (cdr x))
(defmeth simplex-proto :is-worse (x y)
(< (send self :point-value x) (send self :point-value y)))
;;;
;;; Making New Simplices
;;;
(defmeth simplex-proto :isnew (f start &optional size)
(send self :simplex start size)
(send self :f f))
;;;
;;; Slot Accessors and Mutators
;;;
(defmeth simplex-proto :simplex (&optional new size)
(if new
(let ((simplex
(if (and (consp new) (sequencep (car new)))
(if (/= (length new) (+ 1 (length (car new))))
(error "bad simplex data")
(copy-list new))
(let* ((n (length new))
(size (if size size (repeat 1 n)))
; (pts (- (* 2 (uniform-rand (repeat n (+ n 1)))) 1)))
(diag (* 2 size (- (random (repeat 2 n)) .5)))
(pts (cons (repeat 0 n)
(mapcar #'(lambda (x) (coerce x 'list))
(column-list (diagonal diag))))))
(mapcar #'(lambda (x) (+ (* size x) new)) pts)))))
(setf (slot-value 'simplex)
(mapcar #'(lambda (x) (send self :make-point x)) simplex))
(send self :sort-simplex)))
(slot-value 'simplex))
(defmeth simplex-proto :f (&optional f)
(when f
(setf (slot-value 'f) f)
(let ((simplex
(mapcar #'(lambda (x) (send self :point-location x))
(send self :simplex))))
(send self :simplex simplex)))
(slot-value 'f))
(defmeth simplex-proto :sort-simplex ()
(if (send self :f)
(setf (slot-value 'simplex)
(sort (slot-value 'simplex)
#'(lambda (x y) (send self :is-worse x y))))))
;;;
;;; Other Methods Using List Representation of SImplex
;;;
(defmeth simplex-proto :best-point () (car (last (send self :simplex))))
(defmeth simplex-proto :worst-point () (first (send self :simplex)))
(defmeth simplex-proto :second-worst-point () (second (send self :simplex)))
(defmeth simplex-proto :replace-point (new old)
(let* ((simplex (send self :simplex))
(n (position old simplex)))
(when n
(setf (nth n simplex) new)
(send self :sort-simplex))))
(defmeth simplex-proto :mean-opposite-face (x)
(let ((face (mapcar #'(lambda (x) (send self :point-location x))
(remove x (send self :simplex)))))
(/ (apply #'+ face) (length face))))
;;;
;;; Iteration Step Methods
;;;
(defmeth simplex-proto :extrapolate-from-worst (fac)
(let* ((worst (send self :worst-point))
(wloc (send self :point-location worst))
(delta (- (send self :mean-opposite-face worst) wloc))
(new (send self :make-point (+ wloc (* (- 1 fac) delta)))))
(if (send self :is-worse worst new) (send self :replace-point new worst))
new))
(defmeth simplex-proto :shrink-to-best (fac)
(let* ((best (send self :best-point))
(bloc (send self :point-location best)))
(dolist (x (copy-list (send self :simplex)))
(if (not (eq x best))
(send self :replace-point
(send self :make-point
(+ bloc
(* fac
(- (send self :point-location x) bloc))))
x)))))
(defmeth simplex-proto :relative-range ()
(let ((best (send self :point-value (send self :best-point)))
(worst (send self :point-value (send self :worst-point))))
(* 2 (/ (abs (- best worst)) (+ 1 (abs best) (abs worst))))))
|