1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
|
;;;;
;;;; regression.lsp XLISP-STAT regression model proto and methods
;;;; XLISP-STAT 2.1 Copyright (c) 1990, by Luke Tierney
;;;; Additions to Xlisp 2.1, Copyright (c) 1989 by David Michael Betz
;;;; You may give out copies of this software; for conditions see the file
;;;; COPYING included with this distribution.
;;;;
;;;;
;;;; Incorporates modifications suggested by Sandy Weisberg.
;;;;
(provide "regress")
(require "stats")
(require "graphics")
(require "help")
;;;;
;;;;
;;;; Regresion Model Prototype
;;;;
;;;;
(defproto regression-model-proto
'(x y intercept sweep-matrix basis weights
included
total-sum-of-squares
residual-sum-of-squares
predictor-names
response-name
case-labels)
()
*object*
"Normal Linear Regression Model")
;; The doc for this function string is at the limit of XLISP's string
;; constant size - making it longer may cause problems
(defun regression-model (x y &key
(intercept T)
(print T)
weights
(included (repeat t (length y)))
predictor-names
response-name
case-labels)
"Args: (x y &key (intercept T) (print T) weights
included predictor-names response-name case-labels)
X - list of independent variables or X matrix
Y - dependent variable.
INTERCEPT - T to include (default), NIL for no intercept
PRINT - if not NIL print summary information
WEIGHTS - if supplied should be the same length as Y; error variances are
assumed to be inversely proportional to WEIGHTS
PREDICTOR-NAMES
RESPONSE-NAME
CASE-LABELS - sequences of strings or symbols.
INCLUDED - if supplied should be the same length as Y, with elements nil
to skip a in computing estimates (but not in residual analysis).
Returns a regression model object. To examine the model further assign the
result to a variable and send it messages.
Example (data are in file absorbtion.lsp in the sample data directory/folder):
(def m (regression-model (list iron aluminum) absorbtion))
(send m :help)
(send m :plot-residuals)"
(let ((x (cond
((matrixp x) x)
((vectorp x) (list x))
((and (consp x) (numberp (car x))) (list x))
(t x)))
(m (send regression-model-proto :new)))
(send m :x (if (matrixp x) x (apply #'bind-columns x)))
(send m :y y)
(send m :intercept intercept)
(send m :weights weights)
(send m :included included)
(send m :predictor-names predictor-names)
(send m :response-name response-name)
(send m :case-labels case-labels)
(if print (send m :display))
m))
(defmeth regression-model-proto :isnew () (send self :needs-computing t))
(defmeth regression-model-proto :save ()
"Message args: ()
Returns an expression that will reconstruct the regression model."
`(regression-model ',(send self :x)
',(send self :y)
:intercept ',(send self :intercept)
:weights ',(send self :weights)
:included ',(send self :included)
:predictor-names ',(send self :predictor-names)
:response-name ',(send self :response-name)
:case-labels ',(send self :case-labels)))
;;;
;;; Computing and Display Methods
;;;
#|
(defmeth regression-model-proto :compute ()
"Message args: ()
Recomputes the estimates. For internal use by other messages"
(let* ((included (if-else (send self :included) 1 0))
(x (send self :x))
(y (send self :y))
(intercept (send self :intercept))
(weights (send self :weights))
(w (if weights (* included weights) included))
(m (make-sweep-matrix x y w))
(n (array-dimension x 1))
(p (- (array-dimension m 0) 1))
(tss (aref m p p))
(tol (* .0001 (mapcar #'standard-deviation (column-list x))))
(sweep-result
(if intercept
(sweep-operator m (iseq 1 n) tol)
(sweep-operator m (iseq 0 n) (cons 0.0 tol)))))
(setf (slot-value 'sweep-matrix) (first sweep-result))
(setf (slot-value 'total-sum-of-squares) tss)
(setf (slot-value 'residual-sum-of-squares)
(aref (first sweep-result) p p))
(setf (slot-value 'basis)
(let ((b (remove 0 (second sweep-result))))
(if b
(- (reverse b) 1)
(error "no columns could be swept"))))))
|#
;; This should be overridden by a slot value.
(defparameter *regression-tolerance* 1.0e-9
"Tolerance for including regression column")
;; Modified to use sweep diagonals in tolerance and internal
;; sweep methods on a matrix of C-DOUBLE elements type.
(defmeth regression-model-proto :compute ()
"Message args: ()
Recomputes the estimates. For internal use by other messages"
(let* ((included (send self :included))
(x (coerce (send self :x) '(array c-double)))
(y (coerce (send self :y) '(vector c-double)))
(intercept (send self :intercept))
(weights (send self :weights))
(w (coerce (if-else included (if weights weights 1) 0)
'(vector c-double)))
(n (array-dimension x 0))
(p (array-dimension x 1))
(p+1 (+ p 1))
(p+2 (+ p 2))
(m (make-array (list p+2 p+2) :element-type 'c-double))
(xmean (make-array p :element-type 'c-double)))
(base-make-sweep-matrix n p x y w m xmean)
(let* ((tss (aref m p+1 p+1))
(tol (* *regression-tolerance* (/ (butlast (rest (diagonal m))) n)))
(swept nil))
(unless intercept (sweep-in-place p+2 p+2 m 0 0.0))
(mapc #'(lambda (k tol)
(if (sweep-in-place p+2 p+2 m k tol) (push k swept)))
(iseq 1 p)
tol)
(setf (slot-value 'sweep-matrix) (coerce m '(array t)))
(setf (slot-value 'total-sum-of-squares) tss)
(setf (slot-value 'residual-sum-of-squares) (aref m p+1 p+1))
(unless swept (error "no columns could be swept"))
(setf (slot-value 'basis) (- (nreverse swept) 1)))))
(defmeth regression-model-proto :needs-computing (&optional set)
(if set (setf (slot-value 'sweep-matrix) nil))
(null (slot-value 'sweep-matrix)))
(defmeth regression-model-proto :display ()
"Message args: ()
Prints the least squares regression summary. Variables not used in the fit
are marked as aliased."
(let ((coefs (coerce (send self :coef-estimates) 'list))
(se-s (send self :coef-standard-errors))
(x (send self :x))
(p-names (send self :predictor-names)))
(if (send self :weights)
(format t "~%Weighted Least Squares Estimates:~2%")
(format t "~%Least Squares Estimates:~2%"))
(when (send self :intercept)
(format t "Constant~25t~13,6g~40t(~,6g)~%" (car coefs) (car se-s))
(setf coefs (cdr coefs))
(setf se-s (cdr se-s)))
(dotimes (i (array-dimension x 1))
(cond
((member i (send self :basis))
(format t "~a~25t~13,6g~40t(~,6g)~%"
(select p-names i) (car coefs) (car se-s))
(setf coefs (cdr coefs) se-s (cdr se-s)))
(t (format t "~a~25taliased~%" (select p-names i)))))
(format t "~%")
(format t "R Squared:~25t~13,6g~%" (send self :r-squared))
(format t "Sigma hat:~25t~13,6g~%" (send self :sigma-hat))
(format t "Number of cases:~25t~9d~%" (send self :num-cases))
(if (/= (send self :num-cases) (send self :num-included))
(format t "Number of cases used:~25t~9d~%" (send self :num-included)))
(format t "Degrees of freedom:~25t~9d~%" (send self :df))
(format t "~%")))
;;;
;;; Slot accessors and mutators
;;;
#|
(defmeth regression-model-proto :x (&optional new-x)
"Message args: (&optional new-x)
With no argument returns the x matrix as supplied to m. With an argument
NEW-X sets the x matrix to NEW-X and recomputes the estimates."
(when (and new-x (matrixp new-x))
(setf (slot-value 'x) new-x)
(send self :needs-computing t))
(slot-value 'x))
|#
;; Modified to store matrix as typed array with C-DOUBLE elements
(defmeth regression-model-proto :x (&optional new-x)
"Message args: (&optional new-x)
With no argument returns the x matrix as supplied to m. With an argument
NEW-X sets the x matrix to NEW-X and recomputes the estimates."
(when (and new-x (matrixp new-x))
(setf (slot-value 'x) (coerce new-x '(array c-double)))
(send self :needs-computing t))
(slot-value 'x))
(defmeth regression-model-proto :y (&optional new-y)
"Message args: (&optional new-y)
With no argument returns the y sequence as supplied to m. With an argument
NEW-Y sets the y sequence to NEW-Y and recomputes the estimates."
(when (and new-y (or (matrixp new-y) (sequencep new-y)))
(setf (slot-value 'y) new-y)
(send self :needs-computing t))
(slot-value 'y))
(defmeth regression-model-proto :intercept (&optional (val nil set))
"Message args: (&optional new-intercept)
With no argument returns T if the model includes an intercept term, nil if
not. With an argument NEW-INTERCEPT the model is changed to include or
exclude an intercept, according to the value of NEW-INTERCEPT."
(when set
(setf (slot-value 'intercept) val)
(send self :needs-computing t))
(slot-value 'intercept))
(defmeth regression-model-proto :weights (&optional (new-w nil set))
"Message args: (&optional new-w)
With no argument returns the weight sequence as supplied to m; NIL means
an unweighted model. NEW-W sets the weights sequence to NEW-W and
recomputes the estimates."
(when set
(setf (slot-value 'weights) new-w)
(send self :needs-computing t))
(slot-value 'weights))
(defmeth regression-model-proto :total-sum-of-squares ()
"Message args: ()
Returns the total sum of squares around the mean."
(if (send self :needs-computing) (send self :compute))
(slot-value 'total-sum-of-squares))
(defmeth regression-model-proto :residual-sum-of-squares ()
"Message args: ()
Returns the residual sum of squares for the model."
(if (send self :needs-computing) (send self :compute))
(slot-value 'residual-sum-of-squares))
(defmeth regression-model-proto :basis ()
"Message args: ()
Returns the indices of the variables used in fitting the model."
(if (send self :needs-computing) (send self :compute))
(slot-value 'basis))
(defmeth regression-model-proto :sweep-matrix ()
"Message args: ()
Returns the swept sweep matrix. For internal use"
(if (send self :needs-computing) (send self :compute))
(slot-value 'sweep-matrix))
(defmeth regression-model-proto :included (&optional new-included)
"Message args: (&optional new-included)
With no argument, NIL means a case is not used in calculating estimates, and non-nil means it is used. NEW-INCLUDED is a sequence of length of y of nil and t to select cases. Estimates are recomputed."
(when (and new-included
(= (length new-included) (send self :num-cases)))
(setf (slot-value 'included) (copy-seq new-included))
(send self :needs-computing t))
(if (slot-value 'included)
(slot-value 'included)
(repeat t (send self :num-cases))))
(defmeth regression-model-proto :predictor-names (&optional (names nil set))
"Message args: (&optional (names nil set))
With no argument returns the predictor names. NAMES sets the names."
(if set (setf (slot-value 'predictor-names) (mapcar #'string names)))
(let ((p (array-dimension (send self :x) 1))
(p-names (slot-value 'predictor-names)))
(if (not (and p-names (= (length p-names) p)))
(setf (slot-value 'predictor-names)
(mapcar #'(lambda (a) (format nil "Variable ~a" a))
(iseq 0 (- p 1))))))
(slot-value 'predictor-names))
(defmeth regression-model-proto :response-name (&optional (name "Y" set))
"Message args: (&optional name)
With no argument returns the response name. NAME sets the name."
(if set (setf (slot-value 'response-name) (if name (string name) "Y")))
(slot-value 'response-name))
(defmeth regression-model-proto :case-labels (&optional (labels nil set))
"Message args: (&optional labels)
With no argument returns the case-labels. LABELS sets the labels."
(if set (setf (slot-value 'case-labels)
(if labels
(mapcar #'string labels)
(mapcar #'(lambda (x) (format nil "~d" x))
(iseq 0 (- (send self :num-cases) 1))))))
(slot-value 'case-labels))
;;;
;;; Other Methods
;;; None of these methods access any slots directly.
;;;
(defmeth regression-model-proto :num-cases ()
"Message args: ()
Returns the number of cases in the model."
(length (send self :y)))
(defmeth regression-model-proto :num-included ()
"Message args: ()
Returns the number of cases used in the computations."
(sum (if-else (send self :included) 1 0)))
(defmeth regression-model-proto :num-coefs ()
"Message args: ()
Returns the number of coefficients in the fit model (including the
intercept if the model includes one)."
(if (send self :intercept)
(+ 1 (length (send self :basis)))
(length (send self :basis))))
(defmeth regression-model-proto :df ()
"Message args: ()
Returns the number of degrees of freedom in the model."
(- (send self :num-included) (send self :num-coefs)))
(defmeth regression-model-proto :x-matrix ()
"Message args: ()
Returns the X matrix for the model, including a column of 1's, if
appropriate. Columns of X matrix correspond to entries in basis."
(let ((m (select (send self :x)
(iseq 0 (- (send self :num-cases) 1))
(send self :basis))))
(if (send self :intercept)
(bind-columns (repeat 1 (send self :num-cases)) m)
m)))
(defmeth regression-model-proto :leverages ()
"Message args: ()
Returns the diagonal elements of the hat matrix."
(let* ((weights (send self :weights))
(x (send self :x-matrix))
(raw-levs
(matmult (* (matmult x (send self :xtxinv)) x)
(repeat 1 (send self :num-coefs)))))
(if weights (* weights raw-levs) raw-levs)))
#|
(defmeth regression-model-proto :fit-values ()
"Message args: ()
Returns the fitted values for the model."
(matmult (send self :x-matrix) (send self :coef-estimates)))
|#
;; modified to avoid creating a new matrix.
;; should be faster, especially if C storage is used for X
(defmeth regression-model-proto :fit-values ()
"Message args: ()
Returns the fitted values for the model."
(let* ((x (send self :x))
(beta (send self :coef-estimates))
(basis (send self :basis))
(b (make-array (array-dimension x 1) :initial-element 0.0))
(intercept (send self :intercept)))
(coerce (cond
(intercept
(setf (select b basis) (rest beta))
(+ (first beta) (matmult x b)))
(t
(setf (select b basis) beta)
(matmult x b)))
'list)))
(defmeth regression-model-proto :raw-residuals ()
"Message args: ()
Returns the raw residuals for a model."
(- (send self :y) (send self :fit-values)))
(defmeth regression-model-proto :residuals ()
"Message args: ()
Returns the raw residuals for a model without weights. If the model
includes weights the raw residuals times the square roots of the weights
are returned."
(let ((raw-residuals (send self :raw-residuals))
(weights (send self :weights)))
(if weights (* (sqrt weights) raw-residuals) raw-residuals)))
(defmeth regression-model-proto :sum-of-squares ()
"Message args: ()
Returns the error sum of squares for the model."
(send self :residual-sum-of-squares))
(defmeth regression-model-proto :sigma-hat ()
"Message args: ()
Returns the estimated standard deviation of the deviations about the
regression line."
(let ((ss (send self :sum-of-squares))
(df (send self :df)))
(if (/= df 0) (sqrt (/ ss df)))))
;; for models without an intercept the 'usual' formula for R^2 can give
;; negative results; hence the max.
(defmeth regression-model-proto :r-squared ()
"Message args: ()
Returns the sample squared multiple correlation coefficient, R squared, for
the regression."
(max (- 1 (/ (send self :sum-of-squares) (send self :total-sum-of-squares)))
0))
(defmeth regression-model-proto :coef-estimates ()
"Message args: ()
Returns the OLS (ordinary least squares) estimates of the regression
coefficients. Entries beyond the intercept correspond to entries in basis."
(let ((n (array-dimension (send self :x) 1))
(indices (if (send self :intercept)
(cons 0 (+ 1 (send self :basis)))
(+ 1 (send self :basis))))
(m (send self :sweep-matrix)))
(coerce (compound-data-seq (select m (+ 1 n) indices)) 'list)))
(defmeth regression-model-proto :xtxinv ()
"Message args: ()
Returns ((X^T) X)^(-1) or ((X^T) W X)^(-1)."
(let ((indices (if (send self :intercept)
(cons 0 (1+ (send self :basis)))
(1+ (send self :basis)))))
(select (send self :sweep-matrix) indices indices)))
(defmeth regression-model-proto :coef-standard-errors ()
"Message args: ()
Returns estimated standard errors of coefficients. Entries beyond the
intercept correspond to entries in basis."
(let ((s (send self :sigma-hat)))
(if s (* (send self :sigma-hat) (sqrt (diagonal (send self :xtxinv)))))))
(defmeth regression-model-proto :studentized-residuals ()
"Message args: ()
Computes the internally studentized residuals for included cases and externally studentized residuals for excluded cases."
(let ((res (send self :residuals))
(lev (send self :leverages))
(sig (send self :sigma-hat))
(inc (send self :included)))
(if-else inc
(/ res (* sig (sqrt (pmax .00001 (- 1 lev)))))
(/ res (* sig (sqrt (+ 1 lev)))))))
(defmeth regression-model-proto :externally-studentized-residuals ()
"Message args: ()
Computes the externally studentized residuals."
(let* ((res (send self :studentized-residuals))
(df (send self :df)))
(if-else (send self :included)
(* res (sqrt (/ (- df 1) (- df (^ res 2)))))
res)))
(defmeth regression-model-proto :cooks-distances ()
"Message args: ()
Computes Cook's distances."
(let ((lev (send self :leverages))
(res (/ (^ (send self :studentized-residuals) 2)
(send self :num-coefs))))
(if-else (send self :included) (* res (/ lev (- 1 lev) )) (* res lev))))
(defmeth regression-model-proto :plot-residuals (&optional x-values)
"Message args: (&optional x-values)
Opens a window with a plot of the residuals. If X-VALUES are not supplied
the fitted values are used. The plot can be linked to other plots with the
link-views function. Returns a plot object."
(plot-points (if x-values x-values (send self :fit-values))
(send self :residuals)
:title "Residual Plot"
:point-labels (send self :case-labels)))
(defmeth regression-model-proto :plot-bayes-residuals
(&optional x-values)
"Message args: (&optional x-values)
Opens a window with a plot of the standardized residuals and two standard
error bars for the posterior distribution of the actual deviations from the
line. See Chaloner and Brant. If X-VALUES are not supplied the fitted values
are used. The plot can be linked to other plots with the link-views function.
Returns a plot object."
(let* ((r (/ (send self :residuals) (send self :sigma-hat)))
(d (* 2 (sqrt (send self :leverages))))
(low (- r d))
(high (+ r d))
(x-values (if x-values x-values (send self :fit-values)))
(p (plot-points x-values r :title "Bayes Residual Plot"
:point-labels (send self :case-labels))))
(map 'list #'(lambda (a b c d) (send p :plotline a b c d nil))
x-values low x-values high)
(send p :adjust-to-data)
p))
|