1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
|
/* distributions - Basic continuous probability distributions */
/* XLISP-STAT 2.1 Copyright (c) 1990, by Luke Tierney */
/* Additions to Xlisp 2.1, Copyright (c) 1989 by David Michael Betz */
/* You may give out copies of this software; for conditions see the */
/* file COPYING included with this distribution. */
#include "xlisp.h"
#include "xlstat.h"
/* forward declarations */
LOCAL double logbeta P2H(double, double);
LOCAL double betadens P3H(double, double, double);
LOCAL double gammadens P2H(double, double);
LOCAL double tdens P2H(double, double);
LOCAL VOID checkstrict P1H(double);
/***************************************************************************/
/** **/
/** Argument Readers **/
/** **/
/***************************************************************************/
static VOID getbetaargs P4C(double *, pa, double *, pb, int *, pia, int *, pib)
{
LVAL La, Lb;
double da, db;
La = xlgetarg(); da = makefloat(La);
Lb = xlgetarg(); db = makefloat(Lb);
xllastarg();
if (da <= 0.0) xlerror("alpha is too small", La);
if (db <= 0.0) xlerror("beta is too small", Lb);
if (pa != NULL) *pa = da;
if (pb != NULL) *pb = db;
if (pia != NULL) *pia = floor(da);
if (pib != NULL) *pib = floor(db);
}
static VOID getgxtarg P1C(double *, pa)
{
LVAL La;
double da;
La = xlgetarg(); da = makefloat(La);
xllastarg();
if (da <= 0.0) xlerror("alpha is too small", La);
if (pa != NULL) *pa = da;
}
static VOID getfargs P5C(double *, px, double *, pa, double *, pb,
int *, pia, int *, pib)
{
LVAL La, Lb;
double da, db;
La = xlgetarg(); da = makefloat(La);
Lb = xlgetarg(); db = makefloat(Lb);
xllastarg();
if (da <= 0.0) xlerror("alpha is too small", La);
if (db <= 0.0) xlerror("beta is too small", Lb);
da = 0.5 * da; db = 0.5 * db;
if (px != NULL) *px = db / (db + da * *px);
if (pa != NULL) *pa = da;
if (pb != NULL) *pb = db;
if (pia != NULL) *pia = floor(da);
if (pib != NULL) *pib = floor(db);
}
static double getXarg(V) { return(makefloat(xlgetarg())); }
static VOID check_one P2C(LVAL, p, double, dp)
{
if (dp < 0.0 || dp >= 1.0)
xlerror("probability not between 0 and 1", p);
}
/***************************************************************************/
/** **/
/** Numerical Cdf's **/
/** **/
/***************************************************************************/
LOCAL LVAL normalcdf(V)
{
double dx, dp;
dx = getXarg();
normbase(&dx, &dp);
return(cvflonum((FLOTYPE) dp));
}
LOCAL LVAL betacdf(V)
{
double dx, da, db, dp;
int ia, ib;
dx = getXarg();
getbetaargs(&da, &db, &ia, &ib);
betabase(&dx, &da, &db, &ia, &ib, &dp);
return(cvflonum((FLOTYPE) dp));
}
LOCAL LVAL gammacdf(V)
{
double dx, da, dp;
dx = getXarg();
getgxtarg(&da);
gammabase(&dx, &da, &dp);
return(cvflonum((FLOTYPE) dp));
}
LOCAL LVAL chisqcdf(V)
{
double dx, da, dp;
dx = getXarg();
getgxtarg(&da);
da = 0.5 * da; dx = 0.5 * dx;
gammabase(&dx, &da, &dp);
return(cvflonum((FLOTYPE) dp));
}
LOCAL LVAL tcdf(V)
{
double dx, da, dp;
dx = getXarg();
getgxtarg(&da);
studentbase(&dx, &da, &dp);
return(cvflonum((FLOTYPE) dp));
}
LOCAL LVAL fcdf(V)
{
double dx, da, db, dp;
int ia, ib;
dx = getXarg();
getfargs(&dx, &da, &db, &ia, &ib);
betabase(&dx, &db, &da, &ib, &ia, &dp);
dp = 1.0 - dp;
return(cvflonum((FLOTYPE) dp));
}
LOCAL LVAL cauchycdf(V)
{
double dx, dp;
dx = getXarg();
dp = (atan(dx) + PI / 2) / PI;
return(cvflonum((FLOTYPE) dp));
}
/* log-gamma function does not really belong, but... */
LOCAL LVAL loggamma(V)
{
LVAL x;
double dx, dp;
x = xlgetarg();
dx = makefloat(x);
if (dx <= 0) xlerror("non positive argument", x);
dp = gamma(dx);
return(cvflonum((FLOTYPE) dp));
}
/* bivariate normal cdf */
LOCAL LVAL bnormcdf(V)
{
LVAL R;
double x, y, r;
x = makefloat(xlgetarg());
y = makefloat(xlgetarg());
R = xlgetarg(); r = makefloat(R);
xllastarg();
if (r < -1 || r > 1) xlerror("correlation out of range", R);
return(cvflonum((FLOTYPE) bivnor(-x, -y, r)));
}
/* recursive distribution functions */
LVAL xsrnormalcdf(V)
{ return(recursive_subr_map_elements(normalcdf, xsrnormalcdf)); }
LVAL xsrbetacdf(V)
{ return(recursive_subr_map_elements(betacdf, xsrbetacdf)); }
LVAL xsrgammacdf(V)
{ return(recursive_subr_map_elements(gammacdf, xsrgammacdf)); }
LVAL xsrchisqcdf(V)
{ return(recursive_subr_map_elements(chisqcdf, xsrchisqcdf)); }
LVAL xsrtcdf(V)
{ return(recursive_subr_map_elements(tcdf, xsrtcdf)); }
LVAL xsrfcdf(V)
{ return(recursive_subr_map_elements(fcdf, xsrfcdf)); }
LVAL xsrcauchycdf(V)
{ return(recursive_subr_map_elements(cauchycdf, xsrcauchycdf)); }
LVAL xsrloggamma(V)
{ return(recursive_subr_map_elements(loggamma, xsrloggamma)); }
LVAL xsrbnormcdf(V)
{ return(recursive_subr_map_elements(bnormcdf, xsrbnormcdf)); }
/***************************************************************************/
/** **/
/** Numerical Quantile Functions **/
/** **/
/***************************************************************************/
LOCAL LVAL quant P1C(int, dist)
{
LVAL p;
double dp, da, db, dx=0.0;
int ia, ib;
p = xlgetarg(); dp = makefloat(p);
if (dp < 0.0 || dp > 1.0) xlerror("probability out of range", p);
switch (dist) {
case 'N': xllastarg(); checkstrict(dp); dx = ppnd(dp, &ia); break;
case 'C': xllastarg(); checkstrict(dp); dx = tan(PI * (dp - 0.5)); break;
case 'B': getbetaargs(&da, &db, &ia, &ib);
check_one(p, dp);
dx = ppbeta(dp, da, db, &ia);
break;
case 'G': getgxtarg(&da);
db = 0.0;
check_one(p, dp);
dx = ppgamma(dp, da, &ia);
break;
case 'X': getgxtarg(&da);
da = 0.5 * da; db = 0.0;
check_one(p, dp);
dx = 2.0 * ppgamma(dp, da, &ia);
break;
case 'T': getgxtarg(&da);
db = 0.0;
checkstrict(dp);
dx = ppstudent(dp, da, &ia);
break;
case 'F': getfargs(NULL, &da, &db, &ia, &ib);
check_one(p, dp);
if (dp == 0.0) dx = 0.0;
else {
dp = 1.0 - dp;
dx = ppbeta(dp, db, da, &ia);
dx = db * (1.0 / dx - 1.0) / da;
}
break;
default: xlfail("unknown distribution");
}
return(cvflonum((FLOTYPE) dx));
}
LOCAL LVAL normalquant(V) { return(quant('N')); }
LOCAL LVAL cauchyquant(V) { return(quant('C')); }
LOCAL LVAL betaquant(V) { return(quant('B')); }
LOCAL LVAL gammaquant(V) { return(quant('G')); }
LOCAL LVAL chisqquant(V) { return(quant('X')); }
LOCAL LVAL tquant(V) { return(quant('T')); }
LOCAL LVAL fquant(V) { return(quant('F')); }
/* recursive quantile functions */
LVAL xsrnormalquant(V)
{ return(recursive_subr_map_elements(normalquant, xsrnormalquant)); }
LVAL xsrcauchyquant(V)
{ return(recursive_subr_map_elements(cauchyquant, xsrcauchyquant)); }
LVAL xsrbetaquant(V)
{ return(recursive_subr_map_elements(betaquant, xsrbetaquant)); }
LVAL xsrgammaquant(V)
{ return(recursive_subr_map_elements(gammaquant, xsrgammaquant)); }
LVAL xsrchisqquant(V)
{ return(recursive_subr_map_elements(chisqquant, xsrchisqquant)); }
LVAL xsrtquant(V)
{ return(recursive_subr_map_elements(tquant, xsrtquant)); }
LVAL xsrfquant(V)
{ return(recursive_subr_map_elements(fquant, xsrfquant)); }
/***************************************************************************/
/** **/
/** Numerical Density Functions **/
/** **/
/***************************************************************************/
LOCAL LVAL dens P1C(int, dist)
{
LVAL x;
double dx, da, db, dens=0.0;
x = xlgetarg(); dx = makefloat(x);
switch (dist) {
case 'N': xllastarg(); dens = exp(- 0.5 * dx * dx) / sqrt(2.0 * PI); break;
case 'B': getbetaargs(&da, &db, NULL, NULL);
dens = betadens(dx, da, db);
break;
case 'G': getgxtarg(&da);
dens = gammadens(dx, da);
break;
case 'X': getgxtarg(&da);
da = 0.5 * da; dx = 0.5 * dx;
dens = 0.5 * gammadens(dx, da);
break;
case 'T': getgxtarg(&da);
dens = tdens(dx, da);
break;
case 'F': getbetaargs(&da, &db, NULL, NULL);
if (dx <= 0.0) dens = 0.0;
else {
dens = exp(0.5 * da * log(da) + 0.5 * db *log(db)
+ (0.5 * da - 1.0) * log(dx)
- logbeta(0.5 * da, 0.5 * db)
- 0.5 * (da + db) * log(db + da * dx));
}
break;
case 'C': xllastarg(); dens = tdens(dx, 1.0); break;
default: xlfail(" unknown distribution");
}
return(cvflonum((FLOTYPE) dens));
}
/* density functions */
LOCAL LVAL normal_dens(V) { return(dens('N')); }
LOCAL LVAL cauchy_dens(V) { return(dens('C')); }
LOCAL LVAL beta_dens(V) { return(dens('B')); }
LOCAL LVAL gamma_dens(V) { return(dens('G')); }
LOCAL LVAL chisq_dens(V) { return(dens('X')); }
LOCAL LVAL t_dens(V) { return(dens('T')); }
LOCAL LVAL f_dens(V) { return(dens('F')); }
/* recursive density functions */
LVAL xsrnormaldens(V)
{ return(recursive_subr_map_elements(normal_dens, xsrnormaldens)); }
LVAL xsrcauchydens(V)
{ return(recursive_subr_map_elements(cauchy_dens, xsrcauchydens)); }
LVAL xsrbetadens(V)
{ return(recursive_subr_map_elements(beta_dens, xsrbetadens)); }
LVAL xsrgammadens(V)
{ return(recursive_subr_map_elements(gamma_dens, xsrgammadens)); }
LVAL xsrchisqdens(V)
{ return(recursive_subr_map_elements(chisq_dens, xsrchisqdens)); }
LVAL xsrtdens(V)
{ return(recursive_subr_map_elements(t_dens, xsrtdens)); }
LVAL xsrfdens(V)
{ return(recursive_subr_map_elements(f_dens, xsrfdens)); }
LOCAL double logbeta P2C(double, a, double, b)
{
static double da = 0.0, db = 0.0, lbeta = 0.0;
if (a != da || b != db) { /* cache most recent call */
da = a; db = b;
lbeta = gamma(da) + gamma(db) - gamma(da + db);
}
return(lbeta);
}
LOCAL double betadens P3C(double, x, double, a, double, b)
{
double dens;
if (x <= 0.0 || x >= 1.0) dens = 0.0;
else {
dens = exp(log(x) * (a - 1) + log(1 - x) * (b - 1) - logbeta(a, b));
}
return(dens);
}
LOCAL double gammadens P2C(double, x, double, a)
{
double dens;
if (x <= 0.0) dens = 0.0;
else {
dens = exp(log(x) * (a - 1) - x - gamma(a));
}
return(dens);
}
LOCAL double tdens P2C(double, x, double, a)
{
double dens;
dens = (1.0 / sqrt(a * PI))
* exp(gamma(0.5 * (a + 1)) - gamma(0.5 * a)
- 0.5 * (a + 1) * log(1.0 + x * x / a));
return(dens);
}
LOCAL VOID checkstrict P1C(double, dp)
{
if (dp <= 0.0 || dp >= 1.0)
xlfail("probability not strictly between 0 and 1");
}
LOCAL double getposdouble(V)
{
LVAL x;
double dx;
x = xlgetarg();
dx = makefloat(x);
if (dx <= 0.0) xlerror("not a positive number", x);
return(dx);
}
LOCAL double normrand(V)
{
double x, y, u, u1, v;
static double c = -1.0;
if (c < 0.0) c = sqrt(2.0 / exp(1.0));
/* ratio of uniforms with linear pretest */
do {
u = xlunirand();
u1 = xlunirand();
v = c * (2 * u1 - 1);
x = v / u;
y = x * x / 4.0;
} while(y > (1 - u) && y > - log(u));
return(x);
}
LOCAL double cauchyrand(V)
{
double u1, u2, v1, v2;
/* ratio of uniforms on half disk */
do {
u1 = xlunirand();
u2 = xlunirand();
v1 = 2.0 * u1 - 1.0;
v2 = u2;
} while(v1 * v1 + v2 * v2 > 1.0);
return(v1 / v2);
}
LOCAL double gammarand P1C(double, a)
{
double x, u0, u1, u2, v, w, c, c1, c2, c3, c4, c5;
static double e = -1.0;
int done;
if (e < 0.0) e = exp(1.0);
if (a < 1.0) {
/* Ahrens and Dieter algorithm */
done = FALSE;
c = (a + e) / e;
do {
u0 = xlunirand();
u1 = xlunirand();
v = c * u0;
if (v <= 1.0) {
x = exp(log(v) / a);
if (u1 <= exp(-x)) done = TRUE;
}
else {
x = -log((c - v) / a);
if (x > 0.0 && u1 < exp((a - 1.0) * log(x))) done = TRUE;
}
} while(! done);
}
else if (a == 1.0) x = -log(xlunirand());
else {
/* Cheng and Feast algorithm */
c1 = a - 1.0;
c2 = (a - 1.0 / (6.0 * a)) / c1;
c3 = 2.0 / c1;
c4 = 2.0 / (a - 1.0) + 2.0;
c5 = 1.0 / sqrt(a);
do {
do {
u1 = xlunirand();
u2 = xlunirand();
if (a > 2.5) u1 = u2 + c5 * (1.0 - 1.86 * u1);
} while (u1 <= 0.0 || u1 >= 1.0);
w = c2 * u2 / u1;
} while ((c3 * u1 + w + 1.0/w) > c4 && (c3 * log(u1) - log(w) + w) > 1.0);
x = c1 * w;
}
return(x);
}
LOCAL double chisqrand P1C(double, df)
{
return(2.0 * gammarand(df / 2.0));
}
LOCAL double trand P1C(double, df)
{
return(normrand() / sqrt(chisqrand(df) / df));
}
LOCAL double betarand P2C(double, a, double, b)
{
double x, y;
x = gammarand(a);
y = gammarand(b);
return(x / (x + y));
}
LOCAL double frand P2C(double, ndf, double, ddf)
{
return((ddf * chisqrand(ndf)) / (ndf * chisqrand(ddf)));
}
LOCAL LVAL contrand P1C(int, which)
{
LVAL next, result;
int n;
double dx=0.0, da=0.0, db=0.0;
n = getfixnum(xlgafixnum());
switch (which) {
case 'G':
case 'X':
case 'T': da = getposdouble(); break;
case 'B':
case 'F': da = getposdouble(); db = getposdouble(); break;
}
xllastarg();
if (n <= 0) return(NIL);
/* protect result pointer */
xlsave1(result);
result = mklist(n, NIL);
for (next = result; consp(next); next = cdr(next)) {
switch (which) {
case 'U': dx = xlunirand(); break;
case 'N': dx = normrand(); break;
case 'C': dx = cauchyrand(); break;
case 'G': dx = gammarand(da); break;
case 'X': dx = chisqrand(da); break;
case 'T': dx = trand(da); break;
case 'B': dx = betarand(da, db); break;
case 'F': dx = frand(da, db); break;
}
rplaca(next, cvflonum((FLOTYPE) dx));
}
/* restore the stack frame */
xlpop();
return(result);
}
LOCAL LVAL xsuniformrand(V) { return(contrand('U')); }
LOCAL LVAL xsnormalrand(V) { return(contrand('N')); }
LOCAL LVAL xscauchyrand(V) { return(contrand('C')); }
LOCAL LVAL xsgammarand(V) { return(contrand('G')); }
LOCAL LVAL xschisqrand(V) { return(contrand('X')); }
LOCAL LVAL xstrand(V) { return(contrand('T')); }
LOCAL LVAL xsbetarand(V) { return(contrand('B')); }
LOCAL LVAL xsfrand(V) { return(contrand('F')); }
LVAL xsruniformrand(V)
{ return(recursive_subr_map_elements(xsuniformrand, xsruniformrand)); }
LVAL xsrnormalrand(V)
{ return(recursive_subr_map_elements(xsnormalrand, xsrnormalrand)); }
LVAL xsrcauchyrand(V)
{ return(recursive_subr_map_elements(xscauchyrand, xsrcauchyrand)); }
LVAL xsrgammarand(V)
{ return(recursive_subr_map_elements(xsgammarand, xsrgammarand)); }
LVAL xsrchisqrand(V)
{ return(recursive_subr_map_elements(xschisqrand, xsrchisqrand)); }
LVAL xsrtrand(V)
{ return(recursive_subr_map_elements(xstrand, xsrtrand)); }
LVAL xsrbetarand(V)
{ return(recursive_subr_map_elements(xsbetarand, xsrbetarand)); }
LVAL xsrfrand(V)
{ return(recursive_subr_map_elements(xsfrand, xsrfrand)); }
|