File: glim.tex

package info (click to toggle)
xlispstat 3.52.14-1
  • links: PTS
  • area: main
  • in suites: potato
  • size: 7,560 kB
  • ctags: 12,676
  • sloc: ansic: 91,357; lisp: 21,759; sh: 1,525; makefile: 521; csh: 1
file content (1052 lines) | stat: -rw-r--r-- 40,446 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
\documentstyle{article}

\newcommand{\refitem}[1]{%
  \begin{list}%
        {}%
        {\setlength{\leftmargin}{.25in}\setlength{\itemindent}{-.25in}}
  \item #1%
  \end{list}}

\setlength{\textwidth}{6in}
\setlength{\textheight}{8.75in}
\setlength{\topmargin}{-0.25in}
\setlength{\oddsidemargin}{0.25in}

% This command enables hyphenation if \tt mode by changed \hyphencharacter
% in the 10 point typewriter font. To work in other point sizes it would
% have to be redefined. It may be Bator to just make the change globally 
% and have it apply to anything that is set in \tt mode
\newcommand{\dcode}[1]{{\tt #1}}

\newcommand{\param}[1]{$\langle${\em #1\/}$\rangle$}
\newcommand{\protoimage}[1]{\begin{picture}(100,20)\put(0,0){\makebox(100,20){\tt #1}}\put(50,10){\oval(100,20)}\end{picture}}
\newcommand{\wprotoimage}[1]{\begin{picture}(120,20)\put(0,0){\makebox(120,20){\tt #1}}\put(60,10){\oval(120,20)}\end{picture}}

\title{Generalized Linear Models in Lisp-Stat}
\author{Luke Tierney}

\begin{document}
\maketitle

\section{Introduction}
This note outlines a simple system for fitting generalized linear
models in Lisp-Stat. Three standard models are implemented:
\begin{itemize}
\item Poisson regression models
\item Binomial regression models
\item Gamma regression models
\end{itemize}
The model prototypes inherit from the linear regression model
prototype. By default, each model uses the canonical link for its
error structure, but alternate link structures can be specified.

The next section outlines the basic use of the generalized linear
model objects. The third section describes a few functions for
handling categorical independent variables. The fourth section gives
further details on the structure of the model prototypes, and
describes how to define new models and link structures. The final
section illustrates several ways of fitting more specialized models,
using the Bradley-Terry model as an example.

\section{Basic Use of the Model Objects}
Three functions are available for constructing generalized linear
model objects.  These functions are called as
\begin{flushleft}\tt
(poissonreg-model \param{x} \param{y} [\param{keyword arguments ...}])\\
(binomialreg-model \param{x} \param{y} \param{n} [\param{keyword arguments ...}])\\
(gammareg-model \param{x} \param{y} \param{keyword arguments ...})
\end{flushleft}
The \param{x} and \param{y} arguments are as for the
\dcode{regression-model} function. The sample size parameter \param{n}
for binomial models can be either an integer or a sequence of integers
the same length as the response vector. All optional keyword
arguments accepted by the \dcode{regression-model} function are
accepted by these functions as well. Four additional keywords are
available:
\dcode{:link}, \dcode{:offset}, \dcode{:verbose}, and \dcode{:pweights}.
The keyword \dcode{:link} can be used to specify an alternate link
structure. Available link structures include
\begin{center}
\begin{tabular}{llll}
\tt identity-link & \tt log-link    & \tt inverse-link & \tt sqrt-link\\
\tt logit-link    & \tt probit-link & \tt cloglog-link
\end{tabular}
\end{center}
By default, each model uses its canonical link structure.  The
\dcode{:offset} keyword can be used to provide an offset value, and
the keyword \dcode{:verbose} can be given the value \dcode{nil} to
suppress printing of iteration information. A prior weight vector
should be specified with the \dcode{:pweights} keyword rather than the
\dcode{:weights} keyword.

As an example, we can examine a data set that records the number of
months prior to an interview when individuals remember a stressful
event (originally from Haberman, \cite[p. 2]{JKL}):
\begin{verbatim}
> (def months-before (iseq 1 18))
MONTHS-BEFORE
> (def event-counts '(15 11 14 17 5 11 10 4 8 10 7 9 11 3 6 1 1 4))
EVENTS-RECALLED
\end{verbatim}
The data are multinomial, and we can fit a log-linear Poisson model to
see if there is any time trend:
\begin{verbatim}
> (def m (poissonreg-model months-before event-counts))
Iteration 1: deviance = 26.3164
Iteration 2: deviance = 24.5804
Iteration 3: deviance = 24.5704
Iteration 4: deviance = 24.5704

Weighted Least Squares Estimates:

Constant                  2.80316   (0.148162)
Variable 0             -0.0837691   (0.0167996)

Scale taken as:                 1
Deviance:                 24.5704
Number of cases:               18
Degrees of freedom:            16
\end{verbatim}

Residuals for the fit can be obtained using the \dcode{:residuals}
message:
\begin{verbatim}
> (send m :residuals)
(-0.0439191 -0.790305 ...)
\end{verbatim}
A residual plot can be obtained using
\begin{verbatim}
(send m :plot-residuals)
\end{verbatim}
The \dcode{:fit-values} message returns $X\beta$, the linear predictor
without any offset. The \dcode{:fit-means} message returns fitted mean
response values. Thus the expression
\begin{verbatim}
(let ((p (plot-points months-before event-counts)))
  (send p :add-lines months-before (send m :fit-means)))
\end{verbatim}
constructs a plot of raw counts and fitted means against time.

To illustrate fitting binomial models, we can use the leukemia survival
data of Feigl and Zelen \cite[Section 2.8.3]{LS} with the survival
time converted to a one-year survival indicator:
\begin{verbatim}
> (def surv-1 (if-else (> times-pos 52) 1 0))
SURV-1
> surv-1
(1 1 1 1 0 1 1 0 0 1 1 0 0 0 0 0 1)
\end{verbatim}
The dependent variable is the base 10 logarithm of the white blood
cell counts divided by 10,000:
\begin{verbatim}
> transformed-wbc-pos
(-1.46968 -2.59027 -0.84397 -1.34707 -0.510826 0.0487902 0 0.530628 -0.616186
 -0.356675 -0.0618754 1.16315 1.25276 2.30259 2.30259 1.64866 2.30259)
\end{verbatim}
A binomial model for these data can be constructed by
\begin{verbatim}
> (def lk (binomialreg-model transformed-wbc-pos surv-1 1))
Iteration 1: deviance = 18.2935
Iteration 2: deviance = 18.0789
Iteration 3: deviance = 18.0761
Iteration 4: deviance = 18.0761

Weighted Least Squares Estimates:

Constant                 0.372897   (0.590934)
Variable 0              -0.985803   (0.508426)

Scale taken as:                 1
Deviance:                 18.0761
Number of cases:               17
Degrees of freedom:            15
\end{verbatim}
This model uses the logit link, the canonical link for the binomial
distribution. As an alternative, the expression
\begin{verbatim}
(binomialreg-model transformed-wbc-pos surv-1 1 :link probit-link)
\end{verbatim}
returns a model using a probit link.

The \dcode{:cooks-distances} message helps to highlight the last
observation for possible further examination:
\begin{verbatim}
> (send lk :cooks-distances)
(0.0142046 0.00403243 0.021907 0.0157153 0.149394 0.0359723 0.0346383
 0.0450994 0.174799 0.0279114 0.0331333 0.0347883 0.033664 0.0170441 
 0.0170441 0.0280411 0.757332)
\end{verbatim}
This observation also stands out in the plot produced by
\begin{verbatim}
(send lk :plot-bayes-residuals)
\end{verbatim}

\section{Tools for Categorical Variables}
Four functions are provided to help construct indicator vectors for
categorical variables. As an illustration, a data set used by Bishop,
Fienberg, and Holland examines the relationship between occupational
classifications of fathers and sons. The classes are
\begin{center}
\begin{tabular}{|c|l|}
\hline
Label & Description\\
\hline
A     & Professional, High Administrative\\
S     & Managerial, Executive, High Supervisory\\
I     & Low Inspectional, Supervisory\\
N     & Routine Nonmanual, Skilled Manual\\
U     & Semi- and Unskilled Manual\\
\hline
\end{tabular}
\end{center}
The counts are given by
\begin{center}
\begin{tabular}{|c|rrrrr|}
\hline
       & \multicolumn{5}{c|}{Son}\\
\hline
Father &  A &   S &   I &   N &   U \\
\hline
 A     & 50 &  45 &   8 &  18 &   8 \\
 S     & 28 & 174 &  84 & 154 &  55 \\
 I     & 11 &  78 & 110 & 223 &  96 \\
 N     & 14 & 150 & 185 & 714 & 447 \\
 U     &  3 &  42 &  72 & 320 & 411 \\
\hline
\end{tabular}
\end{center}

We can set up the occupation codes as
\begin{verbatim}
(def occupation '(a s i n u))
\end{verbatim}
and construct the son's and father's code vectors for entering the
data row by row as
\begin{verbatim}
(def son (repeat occupation 5))
(def father (repeat occupation (repeat 5 5)))
\end{verbatim}
The counts can then be entered as
\begin{verbatim}
(def counts '(50  45   8  18   8 
              28 174  84 154  55 
              11  78 110 223  96
              14 150 185 714 447
               3  42  72 320 411))
\end{verbatim}

To fit an additive log-linear model, we need to construct level
indicators.  This can be done using the function \dcode{indicators}:
\begin{verbatim}
> (indicators son)
((0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0)
 (0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0)
 (0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0)
 (0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1))
\end{verbatim}
The result is a list of indicator variables for the second through the fifth
levels of the variable \dcode{son}. By default, the first level is dropped.
To obtain indicators for all five levels, we can supply the \dcode{:drop-first}
keyword with value \dcode{nil}:
\begin{verbatim}
> (indicators son :drop-first nil)
((1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0)
 (0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0)
 (0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0)
 (0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0)
 (0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1))
\end{verbatim}

To produce a readable summary of the fit, we also need some labels:
\begin{verbatim}
> (level-names son :prefix 'son)
("SON(S)" "SON(I)" "SON(N)" "SON(U)")
\end{verbatim}
By default, this function also drops the first level. This can again be
changed by supplying the \dcode{:drop-first} keyword argument as
\dcode{nil}:
\begin{verbatim}
> (level-names son :prefix 'son :drop-first nil)
("SON(A)" "SON(S)" "SON(I)" "SON(N)" "SON(U)")
\end{verbatim}
The value of the \dcode{:prefix} keyword can be any Lisp expression.
For example, instead of the symbol \dcode{son} we can use the string
\dcode{"Son"}:
\begin{verbatim}
> (level-names son :prefix "Son")
("Son(S)" "Son(I)" "Son(N)" "Son(U)")
\end{verbatim}

Using indicator variables and level labels, we can now fit an additive
model as
\begin{verbatim}
> (def mob-add
       (poissonreg-model
        (append (indicators son) (indicators father)) counts
        :predictor-names (append (level-names son :prefix 'son)
                                 (level-names father :prefix 'father))))

Iteration 1: deviance = 1007.97
Iteration 2: deviance = 807.484
Iteration 3: deviance = 792.389
Iteration 4: deviance = 792.19
Iteration 5: deviance = 792.19

Weighted Least Squares Estimates:

Constant                  1.36273   (0.130001)
SON(S)                    1.52892   (0.10714)
SON(I)                    1.46561   (0.107762)
SON(N)                    2.60129   (0.100667)
SON(U)                    2.26117   (0.102065)
FATHER(S)                 1.34475   (0.0988541)
FATHER(I)                 1.39016   (0.0983994)
FATHER(N)                 2.46005   (0.0917289)
FATHER(U)                 1.88307   (0.0945049)

Scale taken as:                 1
Deviance:                  792.19
Number of cases:               25
Degrees of freedom:            16
\end{verbatim}
Examining the residuals using  
\begin{verbatim}
(send mob-add :plot-residuals)
\end{verbatim}
shows that the first cell is an outlier -- the model does not fit this
cell well.

To fit a saturated model to these data, we need the cross products of
the indicator variables and also a corresponding set of labels. The
indicators are produced with the \dcode{cross-terms} function
\begin{verbatim}
> (cross-terms (indicators son) (indicators father))
((0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
 (0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0)
 ...)
\end{verbatim}
and the names with the \dcode{cross-names} function:
\begin{verbatim}
> (cross-names (level-names son :prefix 'son)
               (level-names father :prefix 'father))
("SON(S).FATHER(S)" "SON(S).FATHER(I)" ...)
\end{verbatim}
The saturated model can now be fit by
\begin{verbatim}
> (let ((s (indicators son))
        (f (indicators father))
        (sn (level-names son :prefix 'son))
        (fn (level-names father :prefix 'father)))
    (def mob-sat
         (poissonreg-model (append s f (cross-terms s f)) counts 
                           :predictor-names
                           (append sn fn (cross-names sn fn)))))

Iteration 1: deviance = 5.06262e-14
Iteration 2: deviance = 2.44249e-15

Weighted Least Squares Estimates:

Constant                  3.91202   (0.141421)
SON(S)                  -0.105361   (0.20548)
SON(I)                   -1.83258   (0.380789)
SON(N)                   -1.02165   (0.274874)
SON(U)                   -1.83258   (0.380789)
FATHER(S)               -0.579818   (0.236039)
FATHER(I)                -1.51413   (0.33303)
FATHER(N)                -1.27297   (0.302372)
FATHER(U)                -2.81341   (0.594418)
SON(S).FATHER(S)          1.93221   (0.289281)
SON(S).FATHER(I)          2.06417   (0.382036)
SON(S).FATHER(N)          2.47694   (0.346868)
SON(S).FATHER(U)          2.74442   (0.631953)
SON(I).FATHER(S)          2.93119   (0.438884)
SON(I).FATHER(I)          4.13517   (0.494975)
SON(I).FATHER(N)          4.41388   (0.470993)
SON(I).FATHER(U)          5.01064   (0.701586)
SON(N).FATHER(S)           2.7264   (0.343167)
SON(N).FATHER(I)          4.03093   (0.41346)
SON(N).FATHER(N)          4.95348   (0.385207)
SON(N).FATHER(U)          5.69136   (0.641883)
SON(U).FATHER(S)          2.50771   (0.445978)
SON(U).FATHER(I)          3.99903   (0.496312)
SON(U).FATHER(N)          5.29608   (0.467617)
SON(U).FATHER(U)          6.75256   (0.693373)

Scale taken as:                 1
Deviance:              3.37508e-14
Number of cases:               25
Degrees of freedom:             0
\end{verbatim}

\section{Structure of the Generalized Linear Model System}
\subsection{Model Prototypes}
The model objects are organized into several prototypes, with the
general prototype \dcode{glim-proto} inheriting from
\dcode{regression-model-proto}, the prototype for normal linear
regression models. The inheritance tree is shown in Figure
\ref{GLIMTree}.
\begin{figure}
\begin{center}
\begin{picture}(400,160)
\put(140,140){\wprotoimage{regression-model-proto}}
\put(150,70){\protoimage{glim-proto}}
\put(0,0){\protoimage{poissonreg-proto}}
\put(150,0){\protoimage{binomialreg-proto}}
\put(300,0){\protoimage{gammareg-proto}}
\put(200,140){\line(0,-1){50}}
\put(200,70){\line(-3,-1){150}}
\put(200,70){\line(3,-1){150}}
\put(200,70){\line(0,-1){50}}
\end{picture}
\end{center}
\caption{Hierarchy of generalized linear model prototypes.}
\label{GLIMTree}
\end{figure}
This inheritance captures the reasoning by analogy to the linear case
that is the basis for many ideas in the analysis of generalized linear
models. The fitting strategy uses iteratively reweighted least squares
by changing the weight vector in the model and repeatedly calling the
linear regression \dcode{:compute} method.

Convergence of the iterations is determined by comparing the relative
change in the coefficients and the change in the deviance to cutoff
values. The iteration terminates if either change falls below the
corresponding cutoffs. The cutoffs are set and retrieved by the
\dcode{:epsilon} and \dcode{:epsilon-dev} methods. The default values
are given by
\begin{verbatim}
> (send glim-proto :epsilon)
1e-06
> (send glim-proto :epsilon-dev)
0.001
\end{verbatim}
A limit is also imposed on the number of iterations. The limit can be set
and retrieved by the \dcode{:count-limit} message. The default value
is given by
\begin{verbatim}
> (send glim-proto :count-limit)
30
\end{verbatim}

The analogy captured in the inheritance of the \dcode{glim-proto}
prototype from the normal linear regression prototype is based
primarily on the computational process, not the modeling process. As a
result, several accessor methods inherited from the linear regression
object refer to analogous components of the computational process,
rather than analogous components of the model. Two examples are the
messages \dcode{:weights} and \dcode{:y}. The weight vector in the
object returned by \dcode{:weights} is the final set of weights
obtained in the fit; prior weights can be set and retrieved with the
\dcode{:pweights} message. The value returned by the \dcode{:y}
message is the artificial dependent variable
\begin{displaymath}
z = \eta + (y - \mu) \frac{d\eta}{d\mu}
\end{displaymath}
constructed in the iteration; the actual dependent variable can be
obtained and changed with the \dcode{:yvar} message.

The message \dcode{:eta} returns the current linear predictor values,
including any offset. The \dcode{:offset} message sets and retrieves
the offset value. For binomial models, the \dcode{:trials} message
sets and retrieves the number of trials for each observation.

The scale factor is set and retrieved with the \dcode{:scale} message.
Some models permit the estimation of a scale parameter. For these
models, the fitting system uses the \dcode{:fit-scale} message to
obtain a new scale value. The message \dcode{:estimate-scale}
determines and sets whether the scale parameter is to be estimated or
not.

Deviances of individual observations, the total deviance, and the mean
deviance are returned by the messages \dcode{:deviances},
\dcode{:deviance} and \dcode{:mean-deviance}, respectively. The
\dcode{:deviance} and \dcode{:mean-deviance} methods adjusts for
omitted observations, and the denominator for the mean deviance is
adjusted for the degrees of freedom available.

Most inherited methods for residuals, standard errors, etc., should
make sense at least as approximations. For example, residuals returned
by the inherited \dcode{:residuals} message correspond to the Pearson
residuals for generalized linear models. Other forms of residuals are
returned by the messages
\begin{center}
\begin{tabular}{lll}
\tt :chi-residuals & \tt :deviance-residuals & \tt :g2-residuals\\
\tt :raw-residuals & \tt :standardized-chi-residuals & \tt :standardized-deviance-residuals.
\end{tabular}
\end{center}

\subsection{Error Structures}
The error structure of a generalized linear model affects four methods
and two slots The methods are called as
\begin{flushleft}\tt
(send \param{m} :initial-means)\\
(send \param{m} :fit-variances \param{mu})\\
(send \param{m} :fit-deviances  \param{mu})\\
(send \param{m} :fit-scale)
\end{flushleft}
The \dcode{:initial-means} method should return an initial estimate of
the means for the iterative search. The default method simply returns
the dependent variable, but for some models this may need to be
adjusted to move the initial estimate away from a boundary. For
example, the method for the Poisson regression model can be defined as
\begin{verbatim}
(defmeth poissonreg-proto :initial-means () (pmax (send self :yvar) 0.5))
\end{verbatim}
which insures that initial mean estimates are at least 0.5.

The \dcode{:fit-variances} \dcode{:fit-deviances} methods return the
values on the variance and deviance functions for a specified vector
of means. For the Poisson regression model, these methods can be
defined as
\begin{verbatim}
(defmeth poissonreg-proto :fit-variances (mu) mu)
\end{verbatim}
and
\begin{verbatim}
(defmeth poissonreg-proto :fit-deviances (mu)
  (flet ((log+ (x) (log (if-else (< 0 x) x 1))))
    (let* ((y (send self :yvar))
           (raw-dev (* 2 (- (* y (log+ (/ y mu))) (- y mu))))
           (pw (send self :pweights)))
      (if pw (* pw raw-dev) raw-dev))))
\end{verbatim}
The local function \dcode{log+} is used to avoid taking the logarithm
of zero.

The final message, \dcode{:fit-scale}, is only used by the
\dcode{:display} method. The default method returns the mean deviance.

The two slots related to the error structure are
\dcode{estimate-scale} and \dcode{link}. If the value of the
\dcode{estimate-scale} slot is not \dcode{nil}, then a scale estimate
is computed and printed by the \dcode{:dislay} method. The
\dcode{link} slot holds the link object used by the model. The Poisson
model does not have a scale parameter, and the canonical link is the
logit link. These defaults can be set by the expressions
\begin{verbatim}
(send poissonreg-proto :estimate-scale nil)
(send poissonreg-proto :link log-link)
\end{verbatim}

The \dcode{glim-proto} prototype itself uses normal errors and an
identity link. Other error structures can be implemented by
constructing a new prototype and defining appropriate methods and
default slot values.

\subsection{Link Structures}
The link function $g$ for a generalized linear model relates the
linear predictor $\eta$ to the mean response $\mu$ by
\begin{displaymath}
\eta = g(\mu).
\end{displaymath}
Links are implemented as objects.
Table \ref{Links} lists the pre-defined link functions, along with
the expressions used to return link objects.
\begin{table}
\caption{Link Functions and Expression for Obtaining Link Objects}
\label{Links}
\begin{center}
\begin{tabular}{lccl}
\hline
Link & Formula & Domain & Expression\\
\hline
Identity    & $\mu$      & $(-\infty, \infty)$ & \tt identity-link \\
Logarithm   & $\log \mu$ & $(0, \infty)$     & \tt log-link\\
Inverse     & $ 1/\mu$   & $(0, \infty)$ & \tt inverse-link\\
Square Root & $\sqrt{\mu}$ & $(0, \infty)$ & \tt sqrt-link\\
Logit       & $\log\frac{\mu}{1-\mu}$ & $[0,1]$ & \tt logit-link\\
Probit      & $\Phi^{-1}(\mu)$ & $[0,1]$ & \tt probit-link\\
Compl. log-log & $\log(-\log(1-\mu))$ & $[0,1]$ & \tt cloglog-link\\
Power       & $\mu^{k}$ & $(0, \infty)$ & \tt (send power-link-proto :new \param{k})\\
\hline
\end{tabular}
\end{center}
\end{table}
With one exception, the pre-defined links require no parameters.
These link objects can therefore be shared among models. The exception
is the power link. Links for binomial models are defined for $n = 1$
trials and assume $0 < \mu < 1$.

Link objects inherit from the \dcode{glim-link-proto} prototype.  The
\dcode{log-link} object, for example, is constructed by
\begin{verbatim}
(defproto log-link () () glim-link-proto)
\end{verbatim}
Since this prototype can be used directly in model objects, the
convention of having prototype names end in \dcode{-proto} is not
used. The \dcode{glim-link-proto} prototype provides a \dcode{:print}
method that should work for most link functions. The \dcode{log-link}
object prints as
\begin{verbatim}
> log-link
#<Glim Link Object: LOG-LINK>
\end{verbatim}

The \dcode{glim-proto} computing methods assume that a link object
responds to three messages:
\begin{flushleft}\tt
(send \param{link} :eta \param{mu})\\
(send \param{link} :means \param{eta})\\
(send \param{link} :derivs \param{mu})
\end{flushleft}
The \dcode{:eta} method returns a sequence of linear predictor values
for a particular mean sequence. The \dcode{:means} method is the
inverse of \dcode{:eta}: it returns mean values for specified values
of the linear predictor. The \dcode{:derivs} method returns the values of
\begin{displaymath}
\frac{d\eta}{d\mu}
\end{displaymath}
at the specified mean values. As an example, for the \dcode{log-link}
object these three methods are defined as
\begin{verbatim}
(defmeth log-link :eta (mu) (log mu))
(defmeth log-link :means (eta) (exp eta))
(defmeth log-link :derivs (mu) (/ mu))
\end{verbatim}

Alternative link structures can be constructed by setting up a new
prototype and defining appropriate \dcode{:eta}, \dcode{:means}, and
\dcode{:derivs} methods. Parametric link families can be implemented by
providing one or more slots for holding the parameters. The power link
is an example of a parametric link family. The power link prototype
is defined as
\begin{verbatim}
(defproto power-link-proto '(power) () glim-link-proto)
\end{verbatim}
The slot \dcode{power} holds the power exponent. An accessor method
is defined by
\begin{verbatim}
(defmeth power-link-proto :power () (slot-value 'power))
\end{verbatim}
and the \dcode{:isnew} initialization method is defined to require a
power argument:
\begin{verbatim}
(defmeth power-link-proto :isnew (power) (setf (slot-value 'power) power))
\end{verbatim}
Thus a power link for a particular exponent, say the exponent 2, can
be constructed using the expression
\begin{verbatim}
(send power-link-proto :new 2)
\end{verbatim}

To complete the power link prototype, we need to define the three
required methods. They are defined as
\begin{verbatim}
(defmeth power-link-proto :eta (mu) (^ mu (send self :power)))
\end{verbatim}
\begin{verbatim}
(defmeth power-link-proto :means (eta) (^ eta (/ (slot-value 'power))))
\end{verbatim}
and
\begin{verbatim}
(defmeth power-link-proto :derivs (mu)
  (let ((p (slot-value 'power)))
    (* p (^ mu (- p 1)))))
\end{verbatim}
The definition of the \dcode{:means} method could be improved to allow
negative arguments when the power is an odd integer. Finally, the
\dcode{:print} method is redefined to reflect the value of the
exponent:
\begin{verbatim}
(defmeth power-link-proto :print (&optional (stream t))
  (format stream ``#<Glim Link Object: Power Link (~s)>'' (send self :power)))
\end{verbatim}
Thus a square link prints as
\begin{verbatim}
> (send power-link-proto :new 2)
#<Glim Link Object: Power Link (2)>
\end{verbatim}

\section{Fitting a Bradley-Terry Model}
Many models used in categorical data analysis can be viewed as
special cases of generalized linear models. One example is the
Bradley-Terry model for paired comparisons. The Bradley-Terry model
deals with a situation in which $n$ individuals or items are compared
to one another in paired contests.  The model assumes there are
positive quantities $\pi_{1}, \ldots, \pi_{n}$, which can be assumed
to sum to one, such that
\begin{displaymath}
P\{\mbox{$i$ beats $j$}\} = \frac{\pi_{i}}{\pi_{i} + \pi_{j}}.
\end{displaymath}
If the competitions are assumed to be mutually independent, then the
probability $p_{ij} = P\{\mbox{$i$ beats $j$}\}$ satisfies the logit
model
\begin{displaymath}
\log\frac{p_{ij}}{1-p_{ij}} = \phi_{i} - \phi_{j}
\end{displaymath}
with $\phi_{i} = \log \pi_{i}$. This model can be fit to a particular
set of data by setting up an appropriate design matrix and response
vector for a binomial regression model. For a single data set this can
be done from scratch. Alternatively, it is possible to construct
functions or prototypes that allow the data to be specified in a more
convenient form. Furthermore, there are certain specific questions
that can be asked for a Bradley-Terry model, such as what is the
estimated value of $P\{\mbox{$i$ beats $j$}\}$? In the object-oriented
framework, it is very natural to attach methods for answering such
questions to individual models or to a model prototype.

To illustrate these ideas, we can fit a Bradley-Terry model to the
results for the eastern division of the American league for the 1987
baseball season \cite{Agresti}. Table \ref{WinsLosses} gives the results
of the games within this division.
\begin{table}
\caption{Results of 1987 Season for American League Baseball Teams}
\label{WinsLosses}
\begin{center}
\begin{tabular}{lccccccc}
\hline
Winning & \multicolumn{7}{c}{Losing Team}\\
\cline{2-8}
Team & Milwaukee & Detroit & Toronto & New York & Boston &
Cleveland & Baltimore\\
\hline
Milwaukee & -  & 7  & 9  & 7  &  7  & 9 & 11\\
Detroit   & 6  & -  & 7  & 5  & 11  & 9 &  9\\
Toronto   & 4  & 6  & -  & 7  &  7  & 8 & 12\\
New York  & 6  & 8  & 6  & -  &  6  & 7 & 10\\
Boston    & 6  & 2  & 6  & 7  &  -  & 7 & 12\\
Cleveland & 4  & 4  & 5  & 6  &  6  & - &  6\\
Baltimore & 2  & 4  & 1  & 3  &  1  & 7 &  -\\
\hline
\end{tabular}
\end{center}
\end{table}

The simplest way to enter this data is as a list, working through the
table one row at a time:
\begin{verbatim}
(def wins-losses '( -  7  9  7  7  9 11
                    6  -  7  5 11  9  9
                    4  6  -  7  7  8 12
                    6  8  6  -  6  7 10
                    6  2  6  7  -  7 12
                    4  4  5  6  6  -  6
                    2  4  1  3  1  7  -))
\end{verbatim}
The choice of the symbol \dcode{-} for the diagonal entries is
arbitrary; any other Lisp item could be used. The team names will also
be useful as labels:
\begin{verbatim}
(def teams '("Milwaukee" "Detroit" "Toronto" "New York"
             "Boston" "Cleveland" "Baltimore"))
\end{verbatim}

To set up a model, we need to extract the wins and losses from the
\dcode{wins-losses} list. The expression
\begin{verbatim}
(let ((i (iseq 1 6)))
  (def low-i (apply #'append (+ (* 7 i) (mapcar #'iseq i)))))
\end{verbatim}
constructs a list of the indices of the elements in the lower
triangle:
\begin{verbatim}
> low-i
(7 14 15 21 22 23 28 29 30 31 35 36 37 38 39 42 43 44 45 46 47)
\end{verbatim}
The wins can now be extracted from the \dcode{wins-losses} list using
\begin{verbatim}
> (select wins-losses low-i)
(6 4 6 6 8 6 6 2 6 7 4 4 5 6 6 2 4 1 3 1 7)
\end{verbatim}
Since we need to extract the lower triangle from a number of lists, we
can define a function to do this as
\begin{verbatim}
(defun lower (x) (select x low-i))
\end{verbatim}
Using this function, we can calculate the wins and save them in a
variable \dcode{wins}:
\begin{verbatim}
(def wins (lower wins-losses))
\end{verbatim}

To extract the losses, we need to form the list of the entries for the
transpose of our table.  The function \dcode{split-list} can be used
to return a list of lists of the contents of the rows of the original
table.  The \dcode{transpose} function transposes this list of lists,
and the \dcode{append} function can be applied to the result to
combine the lists of lists for the transpose into a single list:
\begin{verbatim}
(def losses-wins (apply #'append (transpose (split-list wins-losses 7))))
\end{verbatim}
The losses are then obtained by
\begin{verbatim}
(def losses (lower losses-wins))
\end{verbatim}
Either \dcode{wins} or \dcode{losses} can be used as the response for
a binomial model, with the trials given by
\begin{verbatim}
(+ wins losses)
\end{verbatim}

When fitting the Bradley-Terry model as a binomial regression model
with a logit link, the model has no intercept and the columns of the
design matrix are the differences of the row and column indicators for
the table of results.  Since the rows of this matrix sum to zero if
all row and column levels are used, we can delete one of the levels,
say the first one. Lists of row and column indicators are set up by
the expressions
\begin{verbatim}
(def rows (mapcar #'lower (indicators (repeat (iseq 7) (repeat 7 7)))))
(def cols (mapcar #'lower (indicators (repeat (iseq 7) 7))))
\end{verbatim}
The function \dcode{indicators} drops the first level in constructing
its indicators. The function \dcode{mapcar} applies \dcode{lower} to
each element of the indicators list and returns a list of the results.
Using these two variables, the expression
\begin{verbatim}
(- rows cols)
\end{verbatim}
constructs a list of the columns of the design matrix.

We can now construct a model object for this data set:
\begin{verbatim}
> (def wl (binomialreg-model (- rows cols)
                             wins
                             (+ wins losses)
                             :intercept nil
                             :predictor-names (rest teams)))
Iteration 1: deviance = 16.1873
Iteration 2: deviance = 15.7371

Weighted Least Squares Estimates:

Detroit                 -0.144948   (0.311056)
Toronto                 -0.286871   (0.310207)
New York                -0.333738   (0.310126)
Boston                  -0.473658   (0.310452)
Cleveland               -0.897502   (0.316504)
Baltimore                -1.58134   (0.342819)

Scale taken as:                 1
Deviance:                 15.7365
Number of cases:               21
Degrees of freedom:            15
\end{verbatim}

To fit to a Bradley-Terry model to other data sets, we can repeat this
process.  As an alternative, we can incorporate the steps used here
into a function:
\begin{verbatim}
(defun bradley-terry-model (counts &key labels)
  (let* ((n (round (sqrt (length counts))))
         (i (iseq 1 (- n 1)))
         (low-i (apply #'append (+ (* n i) (mapcar #'iseq i))))
         (p-names (if labels
                      (rest labels) 
                      (level-names (iseq n) :prefix "Choice"))))
    (labels ((tr (x)
               (apply #'append (transpose (split-list (coerce x 'list) n))))
             (lower (x) (select x low-i))
             (low-indicators (x) (mapcar #'lower (indicators x))))
      (let ((wins (lower counts))
            (losses (lower (tr counts)))
            (rows (low-indicators (repeat (iseq n) (repeat n n))))
            (cols (low-indicators (repeat (iseq n) n))))
        (binomialreg-model (- rows cols)
                           wins 
                           (+ wins losses)
                           :intercept nil
                           :predictor-names p-names)))))
\end{verbatim}
This function defines the function \dcode{lower} as a local function.
The local function \dcode{tr} calculates the list of the elements in
the transposed table, and the function \dcode{low-indicators} produces
indicators for the lower triangular portion of a categorical variable.
The \dcode{bradley-terry-model} function allows the labels for the
contestants to be specified as a keyword argument. If this argument is
omitted, reasonable default labels are constructed. Using this
function, we can construct our model object as
\begin{verbatim}
(def wl (bradley-terry-model wins-losses :labels teams))
\end{verbatim}

The definition of this function could be improved to allow some of the
keyword arguments accepted by \dcode{binomialreg-model}.

Using the fit model object, we can estimate the probability of Boston
$(i = 4)$ defeating New York $(j = 3)$:
\begin{verbatim}
> (let* ((phi (cons 0 (send wl :coef-estimates)))
         (exp-logit (exp (- (select phi 3) (select phi 4)))))
    (/ exp-logit (+ 1 exp-logit)))
0.534923
\end{verbatim}
To be able to easily calculate such an estimate for any pairing, we can
give our model object a method for the \dcode{:success-prob} message
that takes two indices as arguments:
\begin{verbatim}
(defmeth wl :success-prob (i j)
  (let* ((phi (cons 0 (send self :coef-estimates)))
         (exp-logit (exp (- (select phi i) (select phi j)))))
    (/ exp-logit (+ 1 exp-logit))))
\end{verbatim}
Then
\begin{verbatim}
> (send wl :success-prob 4 3)
0.465077
\end{verbatim}

If we want this method to be available for other data sets, we can
construct a Bradley-Terry model prototype by
\begin{verbatim}
(defproto bradley-terry-proto () () binomialreg-proto)
\end{verbatim}
and add the \dcode{:success-prob} method to this prototype:
\begin{verbatim}
(defmeth bradley-terry-proto :success-prob (i j)
  (let* ((phi (cons 0 (send self :coef-estimates)))
         (exp-logit (exp (- (select phi i) (select phi j)))))
    (/ exp-logit (+ 1 exp-logit))))
\end{verbatim}
If we modify the \dcode{bradley-terry-model} function to use this prototype
by defining the function as
\begin{verbatim}
(defun bradley-terry-model (counts &key labels)
  (let* ((n (round (sqrt (length counts))))
         (i (iseq 1 (- n 1)))
         (low-i (apply #'append (+ (* n i) (mapcar #'iseq i))))
         (p-names (if labels
                      (rest labels) 
                      (level-names (iseq n) :prefix "Choice"))))
    (labels ((tr (x)
               (apply #'append (transpose (split-list (coerce x 'list) n))))
             (lower (x) (select x low-i))
             (low-indicators (x) (mapcar #'lower (indicators x))))
      (let ((wins (lower counts))
            (losses (lower (tr counts)))
            (rows (low-indicators (repeat (iseq n) (repeat n n))))
            (cols (low-indicators (repeat (iseq n) n))))
        (send bradley-terry-proto :new
              :x (- rows cols)
              :y wins
              :trials (+ wins losses)
              :intercept nil
              :predictor-names p-names)))))
\end{verbatim}
then the \dcode{:success-prob} metod is available immediately for a
model constructed using this function:
\begin{verbatim}
> (def wl (bradley-terry-model wins-losses :labels teams))
Iteration 1: deviance = 16.1873
Iteration 2: deviance = 15.7371
...
> (send wl :success-prob 4 3)
0.465077
\end{verbatim}

The \dcode{:success-prob} method can be improved in a number of ways.
As one example, we might want to be able to obtain standard errors in
addition to estimates. A convenient way to provide for this
possibility is to have our method take an optional argument. If this
argument is \dcode{nil}, the default, then the method just returns the
estimate. If the argument is not \dcode{nil}, then the method returns
a list of the estimate and its standard error. 

To calculate the standard error, it is easier to start with the logit
of the probability, since the logit is a linear function of the model
coefficients. The method defined as
\begin{verbatim}
(defmeth bradley-terry-proto :success-logit (i j &optional stdev)
  (let ((coefs (send self :coef-estimates)))
    (flet ((lincomb (i j)
             (let ((v (repeat 0 (length coefs))))
               (if (/= 0 i) (setf (select v (- i 1)) 1))
               (if (/= 0 j) (setf (select v (- j 1)) -1))
               v)))
      (let* ((v (lincomb i j))
             (logit (inner-product v coefs))
             (var (if stdev (matmult v (send self :xtxinv) v))))
        (if stdev (list logit (sqrt var)) logit)))))
\end{verbatim}
returns the estimate or a list of the estimate and approximate
standard error of the logit:
\begin{verbatim}
> (send wl :success-logit 4 3)
-0.13992
> (send wl :success-logit 4 3 t)
(-0.13992 0.305583)
\end{verbatim}
The logit is calculated as a linear combination of the coefficients; a
list representing the linear combination vector is constructed by the
local function \dcode{lincomb}.

Standard errors for success probabilities can be computed form the
results of \dcode{:success-logit} using the delta method:
\begin{verbatim}
(defmeth bradley-terry-proto :success-prob (i j &optional stdev)
  (let* ((success-logit (send self :success-logit i j stdev))
         (exp-logit (exp (if stdev (first success-logit) success-logit)))
         (p (/ exp-logit (+ 1 exp-logit)))
         (s (if stdev (* p (- 1 p) (second success-logit)))))
    (if stdev (list p s) p)))
\end{verbatim}
For our example, the results are
\begin{verbatim}
> (send wl :success-prob 4 3)
0.465077
> (send wl :success-prob 4 3 t)
(0.465077 0.0760231)
\end{verbatim}

These methods can be improved further by allowing them to accept
sequences of indices instead of only individual indices.

\section*{Acknowledgements}
I would like to thank Sandy Weisberg for many helpful comments and
suggestions, and for providing the code for the glim residuals
methods.

%\section*{Notes}
%On the DECstations you can load the generalized linear model
%prototypes with the expression
%\begin{verbatim}
%(load-example "glim")
%\end{verbatim}
%This code seems to work reasonably on the examples I have tried, but
%it is not yet thoroughly debugged.

\begin{thebibliography}{99}
\bibitem{Agresti}
{\sc Agresti, A.} (1990), {\em Categorical Data Analysis}, New York,
NY: Wiley.

\bibitem{JKL}
{\sc Lindsey, J. K.} (1989), {\em The Analysis of Categorical Data
Using GLIM}, Springer Lecture Notes in Statistics No.  56, New York,
NY: Springer.

\bibitem{GLIM}
{\sc McCullagh, P. and Nelder, J. A.} (1989), {\em Generalized Linear
Models}, second edition, London: Chapman and Hall.

\bibitem{LS}
{\sc Tierney, L.} (1990), {\em Lisp-Stat: An Object-Oriented
Environment for Statistical Computing and Dynamic Graphics}, New York,
NY: Wiley.
\end{thebibliography}
\end{document}




\begin{table}
\caption{Wins/Losses by Home and Away Team, 1987}
\begin{tabular}{lccccccc}
\hline
Home & \multicolumn{7}{c}{Away Team}\\
\cline{2-8}
Team & Milwaukee & Detroit & Toronto & New York & Boston &
Cleveland & Baltimore\\
\hline
Milwaukee &  -  & 4-3 & 4-2 & 4-3 & 6-1 & 4-2 & 6-0\\
Detroit   & 3-3 &  -  & 4-2 & 4-3 & 6-0 & 6-1 & 4-3\\
Toronto   & 2-5 & 4-3 &  -  & 2-4 & 4-3 & 4-2 & 6-0\\
New York  & 3-3 & 5-1 & 2-5 &  -  & 4-3 & 4-2 & 6-1\\
Boston    & 5-1 & 2-5 & 3-3 & 4-2 &  -  & 5-2 & 6-0\\
Cleveland & 2-5 & 3-3 & 3-4 & 4-3 & 4-2 & -   & 2-4\\
Baltimore & 2-5 & 1-5 & 1-6 & 2-4 & 1-6 & 3-4 &  - \\
\hline
\end{tabular}
\end{table}