File: gamln.c

package info (click to toggle)
xlispstat 3.52.14-1
  • links: PTS
  • area: main
  • in suites: potato
  • size: 7,560 kB
  • ctags: 12,676
  • sloc: ansic: 91,357; lisp: 21,759; sh: 1,525; makefile: 521; csh: 1
file content (305 lines) | stat: -rw-r--r-- 11,239 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
/* Double precision version of the routine in ALGAMA from the netlib */
/* SPECFUN library. Translated by f2c and modified. */

#include "xlisp.h"
#include "xlstat.h"

double gamma P1C(double, x)
{
  /* Local variables */
  double xden, corr, xnum;
  int i;
  double y, xm1, xm2, xm4, res, ysq;

  /* ---------------------------------------------------------------------- */

  /* This routine calculates the LOG(GAMMA) function for a positive real */
  /*   argument X.  Computation is based on an algorithm outlined in */
  /*   references 1 and 2.  The program uses rational functions that */
  /*   theoretically approximate LOG(GAMMA) to at least 18 significant */
  /*   decimal digits.  The approximation for X > 12 is from reference */
  /*   3, while approximations for X < 12.0 are similar to those in */
  /*   reference 1, but are unpublished.  The accuracy achieved depends */
  /*   on the arithmetic system, the compiler, the intrinsic functions, */
  /*   and proper selection of the machine-dependent constants. */


  /* ********************************************************************* */
  /* ********************************************************************* */

  /* Explanation of machine-dependent constants */

  /* beta   - radix for the floating-point representation */
  /* maxexp - the smallest positive power of beta that overflows */
  /* XBIG   - largest argument for which LN(GAMMA(X)) is representable */
  /*          in the machine, i.e., the solution to the equation */
  /*                  LN(GAMMA(XBIG)) = beta**maxexp */
  /* XINF   - largest machine representable floating-point number; */
  /*          approximately beta**maxexp. */
  /* EPS    - The smallest positive floating-point number such that */
  /*          1.0+EPS .GT. 1.0 */
  /* FRTBIG - Rough estimate of the fourth root of XBIG */


  /*     Approximate values for some important machines are: */

  /*                           beta      maxexp         XBIG */

  /* CRAY-1        (S.P.)        2        8191       9.62E+2461 */
  /* Cyber 180/855 */
  /*   under NOS   (S.P.)        2        1070       1.72E+319 */
  /* IEEE (IBM/XT, */
  /*   SUN, etc.)  (S.P.)        2         128       4.08E+36 */
  /* IEEE (IBM/XT, */
  /*   SUN, etc.)  (D.P.)        2        1024       2.55D+305 */
  /* IBM 3033      (D.P.)       16          63       4.29D+73 */
  /* VAX D-Format  (D.P.)        2         127       2.05D+36 */
  /* VAX G-Format  (D.P.)        2        1023       1.28D+305 */


  /*                           XINF        EPS        FRTBIG */

  /* CRAY-1        (S.P.)   5.45E+2465   7.11E-15    3.13E+615 */
  /* Cyber 180/855 */
  /*   under NOS   (S.P.)   1.26E+322    3.55E-15    6.44E+79 */
  /* IEEE (IBM/XT, */
  /*   SUN, etc.)  (S.P.)   3.40E+38     1.19E-7     1.42E+9 */
  /* IEEE (IBM/XT, */
  /*   SUN, etc.)  (D.P.)   1.79D+308    2.22D-16    2.25D+76 */
  /* IBM 3033      (D.P.)   7.23D+75     2.22D-16    2.56D+18 */
  /* VAX D-Format  (D.P.)   1.70D+38     1.39D-17    1.20D+9 */
  /* VAX G-Format  (D.P.)   8.98D+307    1.11D-16    1.89D+76 */

  /* ************************************************************** */
  /* ************************************************************** */

  /* Error returns */

  /*  The program returns the value XINF for X .LE. 0.0 or when */
  /*     overflow would occur.  The computation is believed to */
  /*     be free of underflow and overflow. */


  /* Intrinsic functions required are: */

  /*      LOG */


  /* References: */

  /*  1) W. J. Cody and K. E. Hillstrom, 'Chebyshev Approximations for */
  /*     the Natural Logarithm of the Gamma Function,' Math. Comp. 21, */
  /*     1967, pp. 198-203. */

  /*  2) K. E. Hillstrom, ANL/AMD Program ANLC366S, DGAMMA/DLGAMA, May, */
  /*     1969. */

  /*  3) Hart, Et. Al., Computer Approximations, Wiley and sons, New */
  /*     York, 1968. */


  /*  Authors: W. J. Cody and L. Stoltz */
  /*           Argonne National Laboratory */

  /*  Latest modification: June 16, 1988 */

  /* ---------------------------------------------------------------------- */
  /* ---------------------------------------------------------------------- */
  /*  Mathematical constants */
  /* ---------------------------------------------------------------------- */
  static double one = 1.;
  static double half = .5;
  static double twelve = 12.;
  static double zero = 0.;
  static double four = 4.;
  static double thrhal = 1.5;
  static double two = 2.;
  static double pnt68 = .6796875;
  static double sqrtpi = .9189385332046727417803297;

  /* ---------------------------------------------------------------------- */
  /*  Machine dependent parameters */
  /* ---------------------------------------------------------------------- */
#ifdef IEEEFP
  static double xbig = 2.55e305;
  static double xinf = 1.79e308;
  static double eps = 2.22e-16;
  static double frtbig = 2.25e76;
#else
#ifdef CRAYCC
  static double xbig = 9.62e+2461;
  static double xinf = 5.45e+2465;
  static double eps = 7.11e-15;
  static double frtbig = 3.13e+615;
#else /* use IBM 3033 values */
  static double xbig = 4.29e+73;
  static double xinf = 7.23e+75;
  static double eps = 2.22e-16;
  static double frtbig = 2.56e+18;
#endif /* CRAYCC */
#endif /* IEEEFP */

  /* ---------------------------------------------------------------------- */
  /*  Numerator and denominator coefficients for rational minimax */
  /*     approximation over (0.5,1.5). */
  /* ---------------------------------------------------------------------- */
  static double d1 = -.5772156649015328605195174;
  static double p1[8] = { 4.945235359296727046734888,
			    201.8112620856775083915565,
			    2290.838373831346393026739,
			    11319.67205903380828685045,
			    28557.24635671635335736389,
			    38484.96228443793359990269,
			    26377.48787624195437963534,
			    7225.813979700288197698961 };
  static double q1[8] = { 67.48212550303777196073036,
			    1113.332393857199323513008,
			    7738.757056935398733233834,
			    27639.87074403340708898585,
			    54993.10206226157329794414,
			    61611.22180066002127833352,
			    36351.27591501940507276287,
			    8785.536302431013170870835 };

  /* ---------------------------------------------------------------------- */
  /*  Numerator and denominator coefficients for rational minimax */
  /*     Approximation over (1.5,4.0). */
  /* ---------------------------------------------------------------------- */
  static double d2 = .4227843350984671393993777;
  static double p2[8] = { 4.974607845568932035012064,
			    542.4138599891070494101986,
			    15506.93864978364947665077,
			    184793.2904445632425417223,
			    1088204.76946882876749847,
			    3338152.967987029735917223,
			    5106661.678927352456275255,
			    3074109.054850539556250927 };
  static double q2[8] = { 183.0328399370592604055942,
			    7765.049321445005871323047,
			    133190.3827966074194402448,
			    1136705.821321969608938755,
			    5267964.117437946917577538,
			    13467014.54311101692290052,
			    17827365.30353274213975932,
			    9533095.591844353613395747 };

  /* ---------------------------------------------------------------------- */
  /*  Numerator and denominator coefficients for rational minimax */
  /*     Approximation over (4.0,12.0). */
  /* ---------------------------------------------------------------------- */
  static double d4 = 1.791759469228055000094023;
  static double p4[8] = { 14745.02166059939948905062,
			    2426813.369486704502836312,
			    121475557.4045093227939592,
			    2663432449.630976949898078,
			    29403789566.34553899906876,
			    170266573776.5398868392998,
			    492612579337.743088758812,
			    560625185622.3951465078242 };
  static double q4[8] = { 2690.530175870899333379843,
			    639388.5654300092398984238,
			    41355999.30241388052042842,
			    1120872109.61614794137657,
			    14886137286.78813811542398,
			    101680358627.2438228077304,
			    341747634550.7377132798597,
			    446315818741.9713286462081 };

  /* ---------------------------------------------------------------------- */
  /*  Coefficients for minimax approximation over (12, INF). */
  /* ---------------------------------------------------------------------- */
  static double c[7] = { -.001910444077728,
			   8.4171387781295e-4,
			   -5.952379913043012e-4,
			   7.93650793500350248e-4,
			   -.002777777777777681622553,
			   .08333333333333333331554247,
			   .0057083835261 };

  /* ---------------------------------------------------------------------- */
  y = x;
  if (y > zero && y <= xbig) {
    if (y <= eps) {
      res = -log(y);
    } else if (y <= thrhal) {
      /* ------------------------------------------------------------------- */
      /*  EPS .LT. X .LE. 1.5 */
      /* ------------------------------------------------------------------- */
      if (y < pnt68) {
	corr = -log(y);
	xm1 = y;
      } else {
	corr = zero;
	xm1 = y - half - half;
      }
      if (y <= half || y >= pnt68) {
	xden = one;
	xnum = zero;
	for (i = 1; i <= 8; ++i) {
	  xnum = xnum * xm1 + p1[i - 1];
	  xden = xden * xm1 + q1[i - 1];
	}
	res = corr + xm1 * (d1 + xm1 * (xnum / xden));
      } else {
	xm2 = y - half - half;
	xden = one;
	xnum = zero;
	for (i = 1; i <= 8; ++i) {
	  xnum = xnum * xm2 + p2[i - 1];
	  xden = xden * xm2 + q2[i - 1];
	}
	res = corr + xm2 * (d2 + xm2 * (xnum / xden));
      }
    } else if (y <= four) {
      /* ------------------------------------------------------------------- */
      /*  1.5 .LT. X .LE. 4.0 */
      /* ------------------------------------------------------------------- */
      xm2 = y - two;
      xden = one;
      xnum = zero;
      for (i = 1; i <= 8; ++i) {
	xnum = xnum * xm2 + p2[i - 1];
	xden = xden * xm2 + q2[i - 1];
      }
      res = xm2 * (d2 + xm2 * (xnum / xden));
    } else if (y <= twelve) {
      /* ------------------------------------------------------------------- */
      /*  4.0 .LT. X .LE. 12.0 */
      /* ------------------------------------------------------------------- */
      xm4 = y - four;
      xden = -one;
      xnum = zero;
      for (i = 1; i <= 8; ++i) {
	xnum = xnum * xm4 + p4[i - 1];
	xden = xden * xm4 + q4[i - 1];
      }
      res = d4 + xm4 * (xnum / xden);
    } else {
      /* ------------------------------------------------------------------- */
      /*  Evaluate for argument .GE. 12.0, */
      /* ------------------------------------------------------------------- */
      res = zero;
      if (y <= frtbig) {
	res = c[6];
	ysq = y * y;
	for (i = 1; i <= 6; ++i) {
	  res = res / ysq + c[i - 1];
	}
      }
      res /= y;
      corr = log(y);
      res = res + sqrtpi - half * corr;
      res += y * (corr - one);
    }
  } else {
    /* -------------------------------------------------------------------- */
    /*  Return for bad arguments */
    /* -------------------------------------------------------------------- */
    res = xinf;
  }
  /* ---------------------------------------------------------------------- */
  /*  Final adjustments and return */
  /* ---------------------------------------------------------------------- */
  return res;
  /* ---------- Last line of DLGAMA ---------- */
}