1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
|
/* Double precision version of the routine in ALGAMA from the netlib */
/* SPECFUN library. Translated by f2c and modified. */
#include "xlisp.h"
#include "xlstat.h"
double gamma P1C(double, x)
{
/* Local variables */
double xden, corr, xnum;
int i;
double y, xm1, xm2, xm4, res, ysq;
/* ---------------------------------------------------------------------- */
/* This routine calculates the LOG(GAMMA) function for a positive real */
/* argument X. Computation is based on an algorithm outlined in */
/* references 1 and 2. The program uses rational functions that */
/* theoretically approximate LOG(GAMMA) to at least 18 significant */
/* decimal digits. The approximation for X > 12 is from reference */
/* 3, while approximations for X < 12.0 are similar to those in */
/* reference 1, but are unpublished. The accuracy achieved depends */
/* on the arithmetic system, the compiler, the intrinsic functions, */
/* and proper selection of the machine-dependent constants. */
/* ********************************************************************* */
/* ********************************************************************* */
/* Explanation of machine-dependent constants */
/* beta - radix for the floating-point representation */
/* maxexp - the smallest positive power of beta that overflows */
/* XBIG - largest argument for which LN(GAMMA(X)) is representable */
/* in the machine, i.e., the solution to the equation */
/* LN(GAMMA(XBIG)) = beta**maxexp */
/* XINF - largest machine representable floating-point number; */
/* approximately beta**maxexp. */
/* EPS - The smallest positive floating-point number such that */
/* 1.0+EPS .GT. 1.0 */
/* FRTBIG - Rough estimate of the fourth root of XBIG */
/* Approximate values for some important machines are: */
/* beta maxexp XBIG */
/* CRAY-1 (S.P.) 2 8191 9.62E+2461 */
/* Cyber 180/855 */
/* under NOS (S.P.) 2 1070 1.72E+319 */
/* IEEE (IBM/XT, */
/* SUN, etc.) (S.P.) 2 128 4.08E+36 */
/* IEEE (IBM/XT, */
/* SUN, etc.) (D.P.) 2 1024 2.55D+305 */
/* IBM 3033 (D.P.) 16 63 4.29D+73 */
/* VAX D-Format (D.P.) 2 127 2.05D+36 */
/* VAX G-Format (D.P.) 2 1023 1.28D+305 */
/* XINF EPS FRTBIG */
/* CRAY-1 (S.P.) 5.45E+2465 7.11E-15 3.13E+615 */
/* Cyber 180/855 */
/* under NOS (S.P.) 1.26E+322 3.55E-15 6.44E+79 */
/* IEEE (IBM/XT, */
/* SUN, etc.) (S.P.) 3.40E+38 1.19E-7 1.42E+9 */
/* IEEE (IBM/XT, */
/* SUN, etc.) (D.P.) 1.79D+308 2.22D-16 2.25D+76 */
/* IBM 3033 (D.P.) 7.23D+75 2.22D-16 2.56D+18 */
/* VAX D-Format (D.P.) 1.70D+38 1.39D-17 1.20D+9 */
/* VAX G-Format (D.P.) 8.98D+307 1.11D-16 1.89D+76 */
/* ************************************************************** */
/* ************************************************************** */
/* Error returns */
/* The program returns the value XINF for X .LE. 0.0 or when */
/* overflow would occur. The computation is believed to */
/* be free of underflow and overflow. */
/* Intrinsic functions required are: */
/* LOG */
/* References: */
/* 1) W. J. Cody and K. E. Hillstrom, 'Chebyshev Approximations for */
/* the Natural Logarithm of the Gamma Function,' Math. Comp. 21, */
/* 1967, pp. 198-203. */
/* 2) K. E. Hillstrom, ANL/AMD Program ANLC366S, DGAMMA/DLGAMA, May, */
/* 1969. */
/* 3) Hart, Et. Al., Computer Approximations, Wiley and sons, New */
/* York, 1968. */
/* Authors: W. J. Cody and L. Stoltz */
/* Argonne National Laboratory */
/* Latest modification: June 16, 1988 */
/* ---------------------------------------------------------------------- */
/* ---------------------------------------------------------------------- */
/* Mathematical constants */
/* ---------------------------------------------------------------------- */
static double one = 1.;
static double half = .5;
static double twelve = 12.;
static double zero = 0.;
static double four = 4.;
static double thrhal = 1.5;
static double two = 2.;
static double pnt68 = .6796875;
static double sqrtpi = .9189385332046727417803297;
/* ---------------------------------------------------------------------- */
/* Machine dependent parameters */
/* ---------------------------------------------------------------------- */
#ifdef IEEEFP
static double xbig = 2.55e305;
static double xinf = 1.79e308;
static double eps = 2.22e-16;
static double frtbig = 2.25e76;
#else
#ifdef CRAYCC
static double xbig = 9.62e+2461;
static double xinf = 5.45e+2465;
static double eps = 7.11e-15;
static double frtbig = 3.13e+615;
#else /* use IBM 3033 values */
static double xbig = 4.29e+73;
static double xinf = 7.23e+75;
static double eps = 2.22e-16;
static double frtbig = 2.56e+18;
#endif /* CRAYCC */
#endif /* IEEEFP */
/* ---------------------------------------------------------------------- */
/* Numerator and denominator coefficients for rational minimax */
/* approximation over (0.5,1.5). */
/* ---------------------------------------------------------------------- */
static double d1 = -.5772156649015328605195174;
static double p1[8] = { 4.945235359296727046734888,
201.8112620856775083915565,
2290.838373831346393026739,
11319.67205903380828685045,
28557.24635671635335736389,
38484.96228443793359990269,
26377.48787624195437963534,
7225.813979700288197698961 };
static double q1[8] = { 67.48212550303777196073036,
1113.332393857199323513008,
7738.757056935398733233834,
27639.87074403340708898585,
54993.10206226157329794414,
61611.22180066002127833352,
36351.27591501940507276287,
8785.536302431013170870835 };
/* ---------------------------------------------------------------------- */
/* Numerator and denominator coefficients for rational minimax */
/* Approximation over (1.5,4.0). */
/* ---------------------------------------------------------------------- */
static double d2 = .4227843350984671393993777;
static double p2[8] = { 4.974607845568932035012064,
542.4138599891070494101986,
15506.93864978364947665077,
184793.2904445632425417223,
1088204.76946882876749847,
3338152.967987029735917223,
5106661.678927352456275255,
3074109.054850539556250927 };
static double q2[8] = { 183.0328399370592604055942,
7765.049321445005871323047,
133190.3827966074194402448,
1136705.821321969608938755,
5267964.117437946917577538,
13467014.54311101692290052,
17827365.30353274213975932,
9533095.591844353613395747 };
/* ---------------------------------------------------------------------- */
/* Numerator and denominator coefficients for rational minimax */
/* Approximation over (4.0,12.0). */
/* ---------------------------------------------------------------------- */
static double d4 = 1.791759469228055000094023;
static double p4[8] = { 14745.02166059939948905062,
2426813.369486704502836312,
121475557.4045093227939592,
2663432449.630976949898078,
29403789566.34553899906876,
170266573776.5398868392998,
492612579337.743088758812,
560625185622.3951465078242 };
static double q4[8] = { 2690.530175870899333379843,
639388.5654300092398984238,
41355999.30241388052042842,
1120872109.61614794137657,
14886137286.78813811542398,
101680358627.2438228077304,
341747634550.7377132798597,
446315818741.9713286462081 };
/* ---------------------------------------------------------------------- */
/* Coefficients for minimax approximation over (12, INF). */
/* ---------------------------------------------------------------------- */
static double c[7] = { -.001910444077728,
8.4171387781295e-4,
-5.952379913043012e-4,
7.93650793500350248e-4,
-.002777777777777681622553,
.08333333333333333331554247,
.0057083835261 };
/* ---------------------------------------------------------------------- */
y = x;
if (y > zero && y <= xbig) {
if (y <= eps) {
res = -log(y);
} else if (y <= thrhal) {
/* ------------------------------------------------------------------- */
/* EPS .LT. X .LE. 1.5 */
/* ------------------------------------------------------------------- */
if (y < pnt68) {
corr = -log(y);
xm1 = y;
} else {
corr = zero;
xm1 = y - half - half;
}
if (y <= half || y >= pnt68) {
xden = one;
xnum = zero;
for (i = 1; i <= 8; ++i) {
xnum = xnum * xm1 + p1[i - 1];
xden = xden * xm1 + q1[i - 1];
}
res = corr + xm1 * (d1 + xm1 * (xnum / xden));
} else {
xm2 = y - half - half;
xden = one;
xnum = zero;
for (i = 1; i <= 8; ++i) {
xnum = xnum * xm2 + p2[i - 1];
xden = xden * xm2 + q2[i - 1];
}
res = corr + xm2 * (d2 + xm2 * (xnum / xden));
}
} else if (y <= four) {
/* ------------------------------------------------------------------- */
/* 1.5 .LT. X .LE. 4.0 */
/* ------------------------------------------------------------------- */
xm2 = y - two;
xden = one;
xnum = zero;
for (i = 1; i <= 8; ++i) {
xnum = xnum * xm2 + p2[i - 1];
xden = xden * xm2 + q2[i - 1];
}
res = xm2 * (d2 + xm2 * (xnum / xden));
} else if (y <= twelve) {
/* ------------------------------------------------------------------- */
/* 4.0 .LT. X .LE. 12.0 */
/* ------------------------------------------------------------------- */
xm4 = y - four;
xden = -one;
xnum = zero;
for (i = 1; i <= 8; ++i) {
xnum = xnum * xm4 + p4[i - 1];
xden = xden * xm4 + q4[i - 1];
}
res = d4 + xm4 * (xnum / xden);
} else {
/* ------------------------------------------------------------------- */
/* Evaluate for argument .GE. 12.0, */
/* ------------------------------------------------------------------- */
res = zero;
if (y <= frtbig) {
res = c[6];
ysq = y * y;
for (i = 1; i <= 6; ++i) {
res = res / ysq + c[i - 1];
}
}
res /= y;
corr = log(y);
res = res + sqrtpi - half * corr;
res += y * (corr - one);
}
} else {
/* -------------------------------------------------------------------- */
/* Return for bad arguments */
/* -------------------------------------------------------------------- */
res = xinf;
}
/* ---------------------------------------------------------------------- */
/* Final adjustments and return */
/* ---------------------------------------------------------------------- */
return res;
/* ---------- Last line of DLGAMA ---------- */
}
|