File: glim.lsp

package info (click to toggle)
xlispstat 3.52.14-1
  • links: PTS
  • area: main
  • in suites: potato
  • size: 7,560 kB
  • ctags: 12,676
  • sloc: ansic: 91,357; lisp: 21,759; sh: 1,525; makefile: 521; csh: 1
file content (795 lines) | stat: -rw-r--r-- 24,431 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
;;;;
;;;;
;;;;                  A Simple GLIM Implementation
;;;;
;;;;

(provide "glim")

;;;;
;;;;                         Link Prototypes
;;;;
;;;;
;;;; Links are objects responding to three messages:
;;;;
;;;;     :eta     takes a set of mean values and returns the linear
;;;;              predictor values
;;;;     :means   takes a set of linear predictor values and returns
;;;;              the mean values (the inverse of :eta)
;;;;     :derivs  takes a set of mean values and returns the values of
;;;;              the derivatives of the linear predictors at the mean
;;;;              values
;;;;
;;;; The arguments should be sequences. The glim-link-proto prototype
;;;; implements an identity link. Links for binomial errors are defined
;;;; for means in the unit interval [0, 1], i. e. for n = 1 trials.
;;;;

(defproto glim-link-proto)

(defmeth glim-link-proto :eta (mu)
"Method args: (mu)
Returns linear predictor values at MU."
  mu)

(defmeth glim-link-proto :means (eta)
"Method args: (eta)
Returns mean values for linear predictor ETA."
  eta)

(defmeth glim-link-proto :derivs (mu)
"Method args: (mu)
Returns d(eta)/d(mu) values at MU."
  (repeat 1 (length mu)))

(defmeth glim-link-proto :print (&optional (stream t))
  (format stream "#<Glim Link Object: ~s>" (slot-value 'proto-name)))

(defmeth glim-link-proto :save ()
  (let ((proto (slot-value 'proto-name)))
    (if (eq self (eval proto)) proto `(send ,proto :new))))

;;;;
;;;; Identity Link Prototype
;;;;

(defproto identity-link () () glim-link-proto)

;;;;
;;;; Log Link Prototype
;;;;

(defproto log-link () () glim-link-proto)

(defmeth log-link :eta (mu) (log mu))
(defmeth log-link :means (eta) (exp eta))
(defmeth log-link :derivs (mu) (/ mu))

;;;;
;;;; Inverse-link-prototype
;;;;

(defproto inverse-link () () glim-link-proto)

(defmeth inverse-link :eta (mu) (/ mu))
(defmeth inverse-link :means (eta) (/ eta))
(defmeth inverse-link :derivs (mu) (- (/ (^ mu 2))))

;;;;
;;;; Square Root Link
;;;;

(defproto sqrt-link () () glim-link-proto)

(defmeth sqrt-link :eta (mu) (sqrt mu))
(defmeth sqrt-link :means (eta) (^ eta 2))
(defmeth sqrt-link :derivs (mu) (/ 0.5 (sqrt mu)))

;;;;
;;;; Power Link Prototype
;;;;

(defproto power-link-proto '(power) () glim-link-proto)

(defmeth power-link-proto :isnew (power) (setf (slot-value 'power) power))
(defmeth power-link-proto :power () (slot-value 'power))

(defmeth power-link-proto :print (&optional (stream t))
  (format stream "#<Glim Link Object: Power Link (~s)>" (send self :power)))

(defmeth power-link-proto :save ()
  `(send power-link-proto :new ,(send self :power)))

(defmeth power-link-proto :eta (mu) (^ mu (send self :power)))
(defmeth power-link-proto :means (eta) (^ eta (/ (slot-value 'power))))
(defmeth power-link-proto :derivs (mu)
  (let ((p (slot-value 'power)))
    (* p (^ mu (- p 1)))))

;;;;
;;;; Logit Link Prototype
;;;;

(defproto logit-link () () glim-link-proto)

(defmeth logit-link :eta (p) (log (/ p (- 1 p))))
(defmeth logit-link :means (eta)
  (let ((exp-eta (exp eta)))
    (/ exp-eta (+ 1 exp-eta))))
(defmeth logit-link :derivs (p) (+ (/ p) (/ (- 1 p))))

;;;;
;;;; Probit Link Prototype
;;;;

(defproto probit-link () () glim-link-proto)

(defmeth probit-link :eta (p) (normal-quant p))
(defmeth probit-link :means (eta) (normal-cdf eta))
(defmeth probit-link :derivs (p) (/ 1 (normal-dens (normal-quant p))))

;;;;
;;;; Complimentary Log-Log Link Prototype
;;;;

(defproto cloglog-link () () glim-link-proto)

(defmeth cloglog-link :eta (p) (log (- (log (- 1 p)))))
(defmeth cloglog-link :means (eta) (- 1 (exp (- (exp eta)))))
(defmeth cloglog-link :derivs (p)
  (let ((q (- 1 p)))
    (/ -1 (log q) q)))

;;;;
;;;;
;;;;                The General GLIM Prototype
;;;;         (Uses Normal Errors and an Identity Link)
;;;;
;;;;

(defproto glim-proto 
  '(yvar link offset pweights scale est-scale
         epsilon epsilon-dev count-limit verbose recycle
         eta deviances)
  '() 
  regression-model-proto)

;;;;
;;;; Slot Accessors
;;;;

(defmeth glim-proto :yvar (&optional (new nil set))
"Message args: (&optional new)
Sets or returns dependent variable."
  (when set
        (setf (slot-value 'yvar) new)
        (send self :needs-computing t))
  (slot-value 'yvar))

(defmeth glim-proto :link (&optional (new nil set))
"Message args: (&optional new)
Sets or returns link object."
  (when set
        (setf (slot-value 'link) new)
        (send self :needs-computing t))
  (slot-value 'link))

(defmeth glim-proto :offset (&optional (new nil set))
"Message args: (&optional (new nil set))
Sets or returns offset values."
  (when set
        (setf (slot-value 'offset) new)
        (send self :needs-computing t))
  (slot-value 'offset))

(defmeth glim-proto :pweights (&optional (new nil set))
"Message args: (&optional (new nil set))
Sets or returns prior weights."
  (when set
        (setf (slot-value 'pweights) new)
        (send self :needs-computing t))
  (slot-value 'pweights))

;; changing the scale does not require recomputing the estimates
(defmeth glim-proto :scale (&optional (new nil set))
"Message args: (&optional (new nil set))
Sets or returns value of scale parameter."
  (if set (setf (slot-value 'scale) new))
  (slot-value 'scale))

(defmeth glim-proto :estimate-scale (&optional (val nil set))
"Message args: (&optional (val nil set))
Sets or returns value of ESTIMATE-SCALE option."
  (if set (setf (slot-value 'est-scale) val))
  (slot-value 'est-scale))

(defmeth glim-proto :epsilon (&optional new)
"Message args: (&optional new)
Sets or returns tolerance for relative change in coefficients."
  (if new (setf (slot-value 'epsilon) new))
  (slot-value 'epsilon))

(defmeth glim-proto :epsilon-dev (&optional new)
"Message args: (&optional new)
Sets or returns tolerance for change in deviance."
  (if new (setf (slot-value 'epsilon-dev) new))
  (slot-value 'epsilon-dev))

(defmeth glim-proto :count-limit (&optional new)
"Message args: (&optional new)
Sets or returns maximum number of itrations."
  (if new (setf (slot-value 'count-limit) new))
  (slot-value 'count-limit))

(defmeth glim-proto :recycle (&optional (new nil set))
"Message args: (&optional new)
Sets or returns recycle option. If option is not NIL, current values
are used as initial values by :COMPUTE method."
  (when set
        (setf (slot-value 'recycle) new))
  (slot-value 'recycle))

(defmeth glim-proto :verbose (&optional (val nil set))
"Message args: (&optional (val nil set))
Sets or returns VERBOSE option. Iteration info is printed if option
is not NIL."
  (if set (setf (slot-value 'verbose) val))
  (slot-value 'verbose))

(defmeth glim-proto :eta ()
"Message args: ()
Returns linear predictor values for durrent fit."
  (slot-value 'eta))

(defmeth glim-proto :set-eta (&optional val)
  (if val
      (setf (slot-value 'eta) val)
      (setf (slot-value 'eta)
            (+ (send self :offset) (send self :fit-values)))))

(defmeth glim-proto :deviances ()
"Message args: ()
Returns deviances for durrent fit."
  (slot-value 'deviances))

(defmeth glim-proto :set-deviances ()
  (setf (slot-value 'deviances) 
        (send self :fit-deviances (send self :fit-means))))

;;;;
;;;; Overrides for Regression Methods
;;;;

;; A variant of this method should work for any object whose slot values
;; have valid printed representations.
(defmeth glim-proto :save ()
  (let* ((proto (slot-value 'proto-name))
	 (slots (remove 'link (send self :own-slots)))
	 (values (mapcar #'slot-value slots)))
    `(let ((object (make-object ,proto))
	   (slots ',slots)
	   (values ',values))
       (flet ((add-slot (s v) (send object :add-slot s v)))
	 (mapcar #'add-slot slots values)
	 (add-slot 'link ,(send (send self :link) :save)))
       object)))

(defmeth glim-proto :sigma-hat () (sqrt (send self :scale)))

;; This override is only used to modify the documentation string.
(defmeth glim-proto :fit-values ()
"Message args: ()
Returns Xb, the linear predictor values without the offset.
The :fit-means method returns fitted means for the current estimates."
  (call-next-method))

;; this should be merged with the regression-model method
(defmeth glim-proto :x (&optional x)
  (if x
      (let ((x (cond
                ((matrixp x) x)
                ((vectorp x) (list x))
                ((and (consp x) (numberp (car x))) (list x))
                (t x))))
        (call-next-method (if (matrixp x) x (apply #'bind-columns x)))))
  (call-next-method))

(defmeth glim-proto :raw-residuals () 
"Message args: ()
Returns the raw residuals for a model."
  (- (send self :yvar) (send self :fit-means)))

;; This override is needed because regression-model-proto defines its
;; residuals in terms of :raw-residuals.
(defmeth regression-model-proto :residuals ()
"Message args: ()
Returns the Pearson residuals."
  (let ((raw-residuals (- (send self :y) (send self :fit-values)))
        (weights (send self :weights)))
    (if weights (* (sqrt weights) raw-residuals) raw-residuals)))

;;;;
;;;; Computing methods
;;;;

(defmeth glim-proto :compute ()
  (let* ((epsilon (send self :epsilon))
         (epsilon-dev (send self :epsilon-dev))
         (maxcount (send self :count-limit))
         (low-lim (* 2 (/ machine-epsilon epsilon)))
         (verbose (send self :verbose)))
    (unless (and (send self :eta) (send self :recycle))
            (send self :initialize-search))
    (send self :compute-step)
    (do ((count 1 (+ count 1))
         (beta 0 (send self :coef-estimates))
         (last-beta -1 beta)
         (dev  0 (send self :deviance))
         (last-dev  -1 dev))
        ((or (> count maxcount) 
             (< (max (abs (/ (- beta last-beta)
                             (pmax (abs last-beta) low-lim))))
                epsilon)
             (< (abs (- dev last-dev)) epsilon-dev)))
        (if verbose 
            (format t "Iteration ~d: deviance = ~,6g~%" 
                    count (send self :deviance)))
        (send self :compute-step))))

(defmeth glim-proto :compute-step ()
"Args: ()
Executes one iteratively reweighted least squares step."
  (let* ((yvar (send self :yvar))
         (offset (send self :offset))
         (eta (send self :eta))
         (mu (send self :fit-means eta))
         (d-eta (send self :fit-link-derivs mu))
         (z (- (+ eta (* (- yvar mu) d-eta)) offset))
         (v (send self :fit-variances mu))
         (w-inv (* d-eta d-eta v))
         (pw (send self :pweights)))
    (send self :y z)
    (send self :weights (if pw (/ pw w-inv) (/ w-inv)))
    (call-method regression-model-proto :compute)
    (send self :set-eta)
    (send self :set-deviances)
    (if (send self :estimate-scale) 
        (send self :scale (send self :fit-scale)))))

(defmeth glim-proto :deviance () 
"Message args: ()
Returns deviance for included cases."
  (sum (if-else (send self :included) (send self :deviances) 0)))

(defmeth glim-proto :mean-deviance ()
"Message args: ()
Returns mean deviance for included cases, adjusted for degrees of
freedom."
  (/ (send self :deviance) (send self :df)))

(defmeth glim-proto :initialize-search (&optional eta)
  (send self :set-eta
	(if eta eta (send (send self :link) :eta (send self :initial-means))))
  (send self :needs-computing t))

(defmeth glim-proto :fit-means (&optional (eta (send self :eta)))
"Message args: (&optional (eta (send self :eta)))
Retruns mean values for current or supplied ETA."
  (send (send self :link) :means eta))

(defmeth glim-proto :fit-link-derivs (mu)
"Message args: ()
Returns link derivative values at MU."
  (send (send self :link) :derivs mu))

(defmeth glim-proto :display ()
"Message args: ()
Prints the IRWLS regression summary. Variables not used in the fit are
marked as aliased."
  (let ((coefs (coerce (send self :coef-estimates) 'list))
        (se-s (send self :coef-standard-errors))
        (x (send self :x))
        (p-names (send self :predictor-names)))
    (if (send self :weights) 
        (format t "~%Weighted Least Squares Estimates:~2%")
        (format t "~%Least Squares Estimates:~2%"))
    (when (send self :intercept)
          (format t "Constant~25t~13,6g~40t(~,6g)~%" (car coefs) (car se-s))
          (setf coefs (cdr coefs))
          (setf se-s (cdr se-s)))
    (dotimes (i (array-dimension x 1)) 
             (cond 
               ((member i (send self :basis))
                (format t "~a~25t~13,6g~40t(~,6g)~%"
                        (select p-names i) (car coefs) (car se-s))
                (setf coefs (cdr coefs) se-s (cdr se-s)))
               (t (format t "~a~25taliased~%" (select p-names i)))))
    (format t "~%")
    (if (send self :estimate-scale)
        (format t "Scale Estimate:~25t~13,6g~%" (send self :scale))
        (format t "Scale taken as:~25t~13,6g~%" (send self :scale)))
    (format t "Deviance:~25t~13,6g~%" (send self :deviance))
    (format t "Number of cases:~25t~9d~%" (send self :num-cases))
    (if (/= (send self :num-cases) (send self :num-included))
        (format t "Number of cases used:~25t~9d~%" (send self :num-included)))
    (format t "Degrees of freedom:~25t~9d~%" (send self :df))
    (format t "~%")))


;;;;
;;;; Error-Dependent Methods (Normal Errors)
;;;;

(defmeth glim-proto :initial-means ()
"Message args: ()
Returns initial means estimate for starting the iteration."
  (send self :yvar))

(defmeth glim-proto :fit-variances (mu)
"Message args: (mu)
Returns variance function values at MU."
  (repeat 1 (length mu)))

(defmeth glim-proto :fit-deviances (mu)
"Message args: (mu)
Returns deviance values at MU."
  (let ((raw-dev (^ (- (send self :yvar) mu) 2))
                  (pw (send self :pweights)))
       (if pw (* pw raw-dev) raw-dev)))

(defmeth glim-proto :fit-scale ()
"Message args: ()
Returns estimate of scale parameter."
  (send self :mean-deviance))

;;;;
;;;; Initial values for the prototype
;;;;

(send glim-proto :scale 1.0)
(send glim-proto :offset 0.0)
(send glim-proto :link identity-link)
(send glim-proto :estimate-scale t)
(send glim-proto :epsilon .000001)
(send glim-proto :epsilon-dev .001)
(send glim-proto :count-limit 30)
(send glim-proto :verbose t)

;;;;
;;;; :ISNEW method
;;;;

(defmeth glim-proto :isnew (&key x 
                                 y
				 link
                                 (offset 0)
                                 (intercept t)
                                 included
                                 pweights
                                 (print (and x y))
                                 (verbose t)
                                 predictor-names
                                 response-name
                                 (recycle nil)
                                 case-labels)
  (send self :x x)
  (send self :y y)
  (send self :yvar y)
  (if link (send self :link link))
  (send self :offset offset)
  (send self :intercept intercept)
  (send self :pweights pweights)
  (send self :recycle recycle)
  (send self :verbose verbose)
  (if included (send self :included included))
  (if predictor-names (send self :predictor-names predictor-names))
  (if response-name (send self :response-name response-name))
  (if (or y case-labels) (send self :case-labels case-labels)) ; needs fixing
  (if print (send self :display)))

;;;;
;;;; Some Additional Residual Methods
;;;;

(defmeth glim-proto :chi-residuals ()
"Message args: ()
Returns the components of Pearson's chi-squared residuals."
  (send self :residuals))

(defmeth glim-proto :standardized-chi-residuals ()
"Message args: ()
Returns the components of Standardized Pearson Residuals (Williams, 1987)."
  (send self :studentized-residuals))

(defmeth glim-proto :deviance-residuals ()
"Message args: ()
Returns the components of deviance residuals for non binomial models."
  (let* ((dev (sqrt (send self :deviances)))
         (sign (if-else (< (send self :yvar) (send self :fit-means)) -1 1)))
    (* sign dev)))

(defmeth glim-proto :standardized-deviance-residuals ()
"Message args: ()
Returns the standardized deviance residuals, (Davison and Tsai, 1989)."
  (let* ((dev (send self :deviance-residuals))
         (inc (send self :included))
         (h (send self :leverages)))
    (if-else inc
             (/ dev (sqrt (* (send self :scale) (- 1 h))))
             (/ dev (sqrt (* (send self :scale) (+ 1 h)))))))

(defmeth glim-proto :g2-residuals ()
"Message args: ()
Returns  a weighted combination of the standardized deviance and chi
residuals, (Davison and Tsai, 1989)."
  (let* ((dev (send self :standardized-deviance-residuals))
         (chi (send self :standardized-chi-residuals))
         (inc (send self :included))
         (h (send self :leverages))
         (sign (if-else (< dev 0) -1 1)))
    (* sign (sqrt (+ (* (- 1 h) (^ dev 2))
                     (*   h    (^ chi 2)))))))

;;;;
;;;;
;;;;                 Normal Regression Model Prototype
;;;;
;;;;

(defproto normalreg-proto () () glim-proto)

;;;;
;;;; Normal Model Constructor Function
;;;;

(defun normalreg-model (x y &rest args)
"Args: (x y &rest args)
Returns a normal regression model. Accepts :LINK, :OFFSET and :VERBOSE
keywords in addition to the keywords accepted by regression-model."
  (apply #'send normalreg-proto :new :x x :y y args))

;;;;
;;;;
;;;;             Poisson Regression Model Prototype
;;;;
;;;;

(defproto poissonreg-proto () () glim-proto)

;;;;
;;;; Error-Dependent Methods (Poisson Errors)
;;;;

(defmeth poissonreg-proto :initial-means () (pmax (send self :yvar) 0.5))

(defmeth poissonreg-proto :fit-variances (mu) mu)

(defmeth poissonreg-proto :fit-deviances (mu)
  (flet ((log+ (x) (log (if-else (< 0 x) x 1)))) ; to prevent log of zero
    (let* ((y (send self :yvar))
           (raw-dev (* 2 (- (* y (log+ (/ y mu))) (- y mu))))
           (pw (send self :pweights)))
      (if pw (* pw raw-dev) raw-dev))))

;;;;
;;;; Initial values for the prototype
;;;;

(send poissonreg-proto :estimate-scale nil)
(send poissonreg-proto :link log-link)

;;;;
;;;; Poisson Model Constructor Functions
;;;;

(defun poissonreg-model (x y &rest args)
"Args: (x y &rest args)
Returns a Poisson regression model. Accepts :LINK, :OFFSET and :VERBOSE
keywords in addition to the keywords accepted by regression-model."
  (apply #'send poissonreg-proto :new :x x :y y args))

(defun loglinreg-model (x y &rest args)
"Args: (x y &rest args)
Returns a Poisson regression model with a log link. Accepts :OFFSET and
:VERBOSE keywords in addition to the keywords accepted by regression-model."
  (apply #'send poissonreg-proto :new :x x :y y :link log-link args))

;;;;
;;;;
;;;;             Binomial Regression Model Prototype
;;;;
;;;;

(defproto binomialreg-proto '(trials) () glim-proto)

;;;;
;;;; Slot Accessor
;;;;

(defmeth binomialreg-proto :trials (&optional new)
"Message args: ()
Sets or retruns number of trials for each observation."
  (when new
        (setf (slot-value 'trials) new)
        (send self :needs-computing t))
  (slot-value 'trials))

;;;;
;;;; Overrides for link-related methods to incorporate trials
;;;;

(defmeth binomialreg-proto :fit-means (&optional (eta (send self :eta)))
  (let ((n (send self :trials))
	(p (call-next-method eta)))
    (* n p)))

(defmeth  binomialreg-proto :fit-link-derivs (mu)
  (let* ((n (send self :trials))
	 (d (call-next-method (/ mu n))))
    (/ d n)))

(defmeth binomialreg-proto :initialize-search (&optional eta)
  (call-next-method 
   (if eta eta (send (send self :link) :eta (send self :initial-probs)))))

;;;;
;;;; Error-Dependent Methods (Binomial Errors)
;;;;

(defmeth binomialreg-proto :initial-probs ()
  (let* ((n (send self :trials))
	 (p (/ (pmax (pmin (send self :yvar) (- n 0.5)) 0.5) n)))
    p))

(defmeth binomialreg-proto :initial-means ()
  (* (send self :trials) (send self :initial-probs)))

(defmeth binomialreg-proto :fit-variances (mu)
  (let* ((n (send self :trials))
         (p (/ mu n)))
    (* n p (- 1 p))))

(defmeth binomialreg-proto :fit-deviances (mu)
  (flet ((log+ (x) (log (if-else (< 0 x) x 1)))) ; to prevent log of zero
    (let* ((n (send self :trials))
           (y (send self :yvar))
           (n-y (- n y))
           (n-mu (- n mu))
           (pw (send self :pweights))
           (raw-dev (* 2 (+ (* y (log+ (/ y mu))) 
                            (* n-y (log+ (/ n-y n-mu)))))))
      (if pw (* pw raw-dev) raw-dev))))

;;;;
;;;; Other Methods
;;;;

(defmeth binomialreg-proto :fit-probabilities ()
"Message args: ()
Returns the fitted probabilities for the model."
  (/ (send self :fit-means) (send self :trials)))

;;;;
;;;; :ISNEW method
;;;;

(defmeth binomialreg-proto :isnew (&rest args &key trials)
  (send self :trials trials)
  (apply #'call-next-method args))

;;;;
;;;; Initial values for the prototype
;;;;

(send binomialreg-proto :estimate-scale nil)
(send binomialreg-proto :link logit-link)

;;;;
;;;; Binomial Model Constructor Functions
;;;;

(defun binomialreg-model (x y n &rest args)
"Args: (x y n &rest args)
Returns a binomial regression model. Accepts :LINK, :OFFSET and :VERBOSE
keywords in addition to the keywords accepted by regression-model."
  (apply #'send binomialreg-proto :new :x x :y y :trials n args))

(defun logitreg-model (x y n &rest args)
"Args: (x y n &rest args)
Returns a logistic regression model (binomial regression model with logit
link). Accepts :OFFSET and :VERBOSE keywords in addition to the keywords
accepted by regression-model."
  (apply #'send binomialreg-proto :new 
	 :x x :y y :trials n :link logit-link args))

(defun probitreg-model (x y n &rest args)
"Args: (x y n &rest args)
Returns a probit regression model (binomial regression model with probit
link). Accepts :OFFSET and :VERBOSE keywords in addition to the keywords
accepted by regression-model."
  (apply #'send binomialreg-proto :new
	 :x x :y y :trials n :link probit-link args))

;;;;
;;;;
;;;;               Gamma Regression Model Prototype
;;;;
;;;;

(defproto gammareg-proto () () glim-proto)

;;;;
;;;; Error-Dependent Methods
;;;;

(defmeth gammareg-proto :initial-means () (pmax (send self :yvar) 0.5))

(defmeth gammareg-proto :fit-variances (mu) (^ mu 2))

(defmeth gammareg-proto :fit-deviances (mu)
  (let* ((y (send self :yvar))
	 (pw (send self :pweights))
         (raw-dev (* 2 (+ (- (log (/ y mu))) (/ (- y mu) mu)))))
    (if pw (* raw-dev pw) raw-dev)))

;;;;
;;;; Initial values for the prototype
;;;;

(send gammareg-proto :link inverse-link)

;;;;
;;;; Gamma Model Constructor Function
;;;;

(defun gammareg-model (x y &rest args)
"Args: (x y &rest args)
Returns a Gamma regression model. Accepts :LINK, :OFFSET and :VERBOSE
keywords in addition to the keywords accepted by regression-model."
  (apply #'send gammareg-proto :new :x x :y y args))

;;;;
;;;;
;;;;                Some Simple Design Matrix Tools
;;;;
;;;;

(defun indicators (x &key (drop-first t) (test #'eql))
"Args: (x &key (drop-first t) (test #'eql))
Returns a list of indicators sequences for the levels of X. TEST is
used to check equality of levels. If DROP-FIRST is true, the indicator
for the first level is dropped."
  (let ((levels (remove-duplicates (coerce x 'list))))
    (mapcar #'(lambda (lev) (if-else (map-elements test lev x) 1 0))
            (if drop-first (rest levels) levels))))

(defun cross-terms (x &rest args)
"Args: (x &rest args)
Arguments should be lists. Returns list of cross products, with the first
argument list varying slowest."
  (case (length args)
    (0 (error "too few arguments"))
    (1 (let ((y (first args)))
         (apply #'append 
                (mapcar #'(lambda (a) (mapcar #'(lambda (b) (* a b)) y)) x))))
    (t (cross-terms x (apply #'cross-terms args)))))

(defun level-names (x &key (prefix "") (drop-first t))
"Args: (x &key (prefix \"\") (drop-first t))
Constructs name strings using unique levels in X and PREFIX."
  (let ((levels (remove-duplicates (coerce x 'list))))
    (mapcar #'(lambda (x) (format nil "~a(~a)" prefix x))
            (if drop-first (rest levels) levels))))

(defun cross-names (x &rest args)
"Args: (x &rest args)
Arguments should be lists. Constructs cross products of names, separated
by dots. First index varies slowest."
  (flet ((paste (x y) (format nil "~a.~a" x y)))
    (case (length args)
      (0 (error "too few arguments"))
      (1 (let ((y (first args)))
           (apply #'append
                  (mapcar #'(lambda (a) (mapcar #'(lambda (b) (paste a b)) y))
                          x))))
      (t (cross-names x (apply #'cross-names args))))))