File: nor.c

package info (click to toggle)
xlispstat 3.52.14-1
  • links: PTS
  • area: main
  • in suites: potato
  • size: 7,560 kB
  • ctags: 12,676
  • sloc: ansic: 91,357; lisp: 21,759; sh: 1,525; makefile: 521; csh: 1
file content (357 lines) | stat: -rw-r--r-- 12,420 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
/* Double precision version of routines in ERF from the netlib SPECFUN */
/* library. Translated by f2c and modified. */

#include "xlisp.h"
#include "xlstat.h"
#include "linalg.h"

static VOID calerf P3C(double, arg, double *, result, int, jint)
{
  /* ------------------------------------------------------------------ */
  /* This packet evaluates  erf(x),  erfc(x),  and  exp(x*x)*erfc(x) */
  /*   for a real argument  x.  It contains three FUNCTION type */
  /*   subprograms: ERF, ERFC, and ERFCX (or DERF, DERFC, and DERFCX), */
  /*   and one SUBROUTINE type subprogram, CALERF.  The calling */
  /*   statements for the primary entries are: */

  /*                   Y=ERF(X)     (or   Y=DERF(X)), */

  /*                   Y=ERFC(X)    (or   Y=DERFC(X)), */
  /*   and */
  /*                   Y=ERFCX(X)   (or   Y=DERFCX(X)). */

  /*   The routine  CALERF  is intended for internal packet use only, */
  /*   all computations within the packet being concentrated in this */
  /*   routine.  The function subprograms invoke  CALERF  with the */
  /*   statement */

  /*          CALL CALERF(ARG,RESULT,JINT) */

  /*   where the parameter usage is as follows */

  /*      Function                     Parameters for CALERF */
  /*       call              ARG                  Result          JINT */

  /*     ERF(ARG)      ANY REAL ARGUMENT         ERF(ARG)          0 */
  /*     ERFC(ARG)     ABS(ARG) .LT. XBIG        ERFC(ARG)         1 */
  /*     ERFCX(ARG)    XNEG .LT. ARG .LT. XMAX   ERFCX(ARG)        2 */

  /*   The main computation evaluates near-minimax approximations */
  /*   from "Rational Chebyshev approximations for the error function" */
  /*   by W. J. Cody, Math. Comp., 1969, PP. 631-638.  This */
  /*   transportable program uses rational functions that theoretically */
  /*   approximate  erf(x)  and  erfc(x)  to at least 18 significant */
  /*   decimal digits.  The accuracy achieved depends on the arithmetic */
  /*   system, the compiler, the intrinsic functions, and proper */
  /*   selection of the machine-dependent constants. */

  /* ******************************************************************* */
  /* ******************************************************************* */

  /* Explanation of machine-dependent constants */

  /*   XMIN   = the smallest positive floating-point number. */
  /*   XINF   = the largest positive finite floating-point number. */
  /*   XNEG   = the largest negative argument acceptable to ERFCX; */
  /*            the negative of the solution to the equation */
  /*            2*exp(x*x) = XINF. */
  /*   XSMALL = argument below which erf(x) may be represented by */
  /*            2*x/sqrt(pi)  and above which  x*x  will not underflow. */
  /*            A conservative value is the largest machine number X */
  /*            such that   1.0 + X = 1.0   to machine precision. */
  /*   XBIG   = largest argument acceptable to ERFC;  solution to */
  /*            the equation:  W(x) * (1-0.5/x**2) = XMIN,  where */
  /*            W(x) = exp(-x*x)/[x*sqrt(pi)]. */
  /*   XHUGE  = argument above which  1.0 - 1/(2*x*x) = 1.0  to */
  /*            machine precision.  A conservative value is */
  /*            1/[2*sqrt(XSMALL)] */
  /*   XMAX   = largest acceptable argument to ERFCX; the minimum */
  /*            of XINF and 1/[sqrt(pi)*XMIN]. */

  /*   Approximate values for some important machines are: */

  /*                          XMIN       XINF        XNEG     XSMALL */

  /*  CDC 7600      (S.P.)  3.13E-294   1.26E+322   -27.220  7.11E-15 */
  /*  CRAY-1        (S.P.)  4.58E-2467  5.45E+2465  -75.345  7.11E-15 */
  /*  IEEE (IBM/XT, */
  /*    SUN, etc.)  (S.P.)  1.18E-38    3.40E+38     -9.382  5.96E-8 */
  /*  IEEE (IBM/XT, */
  /*    SUN, etc.)  (D.P.)  2.23D-308   1.79D+308   -26.628  1.11D-16 */
  /*  IBM 195       (D.P.)  5.40D-79    7.23E+75    -13.190  1.39D-17 */
  /*  UNIVAC 1108   (D.P.)  2.78D-309   8.98D+307   -26.615  1.73D-18 */
  /*  VAX D-Format  (D.P.)  2.94D-39    1.70D+38     -9.345  1.39D-17 */
  /*  VAX G-Format  (D.P.)  5.56D-309   8.98D+307   -26.615  1.11D-16 */


  /*                          XBIG       XHUGE       XMAX */

  /*  CDC 7600      (S.P.)  25.922      8.39E+6     1.80X+293 */
  /*  CRAY-1        (S.P.)  75.326      8.39E+6     5.45E+2465 */
  /*  IEEE (IBM/XT, */
  /*    SUN, etc.)  (S.P.)   9.194      2.90E+3     4.79E+37 */
  /*  IEEE (IBM/XT, */
  /*    SUN, etc.)  (D.P.)  26.543      6.71D+7     2.53D+307 */
  /*  IBM 195       (D.P.)  13.306      1.90D+8     7.23E+75 */
  /*  UNIVAC 1108   (D.P.)  26.582      5.37D+8     8.98D+307 */
  /*  VAX D-Format  (D.P.)   9.269      1.90D+8     1.70D+38 */
  /*  VAX G-Format  (D.P.)  26.569      6.71D+7     8.98D+307 */

  /* ******************************************************************* */
  /* ******************************************************************* */

  /* Error returns */

  /*  The program returns  ERFC = 0      for  ARG .GE. XBIG; */

  /*                       ERFCX = XINF  for  ARG .LT. XNEG; */
  /*      and */
  /*                       ERFCX = 0     for  ARG .GE. XMAX. */


  /* Intrinsic functions required are: */

  /*     ABS, AINT, EXP */


  /*  Author: W. J. Cody */
  /*          Mathematics and Computer Science Division */
  /*          Argonne National Laboratory */
  /*          Argonne, IL 60439 */

  /*  Latest modification: March 19, 1990 */

  /* ------------------------------------------------------------------ */
  double xden, xnum;
  int i;
  double x, y, del, ysq;
  /* ------------------------------------------------------------------ */
  /*  Mathematical constants */
  /* ------------------------------------------------------------------ */
  static double four = 4.;
  static double one = 1.;
  static double half = .5;
  static double two = 2.;
  static double zero = 0.;
  static double sqrpi = .56418958354775628695;
  static double thresh = .46875;
  static double sixten = 16.;
  /* ------------------------------------------------------------------ */
  /*  Machine-dependent constants */
  /* ------------------------------------------------------------------ */
#ifdef IEEEFP
  static double xinf = 1.79e308;
  static double xneg = -26.628;
  static double xsmall = 1.11e-16;
  static double xbig = 26.543;
  static double xhuge = 6.71e7;
  static double xmax = 2.53e307;
#else
#ifdef CRAYCC
  static double xinf = 5.45e2465;
  static double xneg = -75.345;
  static double xsmall = 7.11e-15;
  static double xbig = 75.326;
  static double xhuge = 8.39e6;
  static double xmax = 5.45e2465;
#else /* use IBM 196 values */
  static double xinf = 7.23e75;
  static double xneg = -13.190;
  static double xsmall = 1.39e-17;
  static double xbig = 13.306;
  static double xhuge = 1.90e8;
  static double xmax = 7.23e75;
#endif /* CRAYCC */
#endif /* IEEEFP */
  /* ------------------------------------------------------------------ */
  /*  Coefficients for approximation to  erf  in first interval */
  /* ------------------------------------------------------------------ */
  static double a[5] = { 3.1611237438705656,113.864154151050156,
			   377.485237685302021,3209.37758913846947,
			   .185777706184603153 };
  static double b[4] = { 23.6012909523441209,244.024637934444173,
			   1282.61652607737228,2844.23683343917062 };
  /* ------------------------------------------------------------------ */
  /*  Coefficients for approximation to  erfc  in second interval */
  /* ------------------------------------------------------------------ */
  static double c[9] = { .564188496988670089,8.88314979438837594,
			   66.1191906371416295,298.635138197400131,
			   881.95222124176909,1712.04761263407058,
			   2051.07837782607147,1230.33935479799725,
			   2.15311535474403846e-8 };
  static double d[8] = { 15.7449261107098347,117.693950891312499,
			   537.181101862009858,1621.38957456669019,
			   3290.79923573345963,4362.61909014324716,
			   3439.36767414372164,1230.33935480374942 };
  /* ------------------------------------------------------------------ */
  /*  Coefficients for approximation to  erfc  in third interval */
  /* ------------------------------------------------------------------ */
  static double p[6] = { .305326634961232344,.360344899949804439,
			   .125781726111229246,.0160837851487422766,
			   6.58749161529837803e-4,.0163153871373020978 };
  static double q[5] = { 2.56852019228982242,1.87295284992346047,
			   .527905102951428412,.0605183413124413191,
			   .00233520497626869185 };
  /* ------------------------------------------------------------------ */
  x = arg;
  y = abs(x);
  if (y <= thresh) {
    /* ------------------------------------------------------------------ */
    /*  Evaluate  erf  for  |X| <= 0.46875 */
    /* ------------------------------------------------------------------ */
    ysq = zero;
    if (y > xsmall) {
      ysq = y * y;
    }
    xnum = a[4] * ysq;
    xden = ysq;
    for (i = 1; i <= 3; ++i) {
      xnum = (xnum + a[i - 1]) * ysq;
      xden = (xden + b[i - 1]) * ysq;
    }
    *result = x * (xnum + a[3]) / (xden + b[3]);
    if (jint != 0) {
      *result = one - *result;
    }
    if (jint == 2) {
      *result = exp(ysq) * *result;
    }
    return;
    /* ------------------------------------------------------------------ */
    /*  Evaluate  erfc  for 0.46875 <= |X| <= 4.0 */
    /* ------------------------------------------------------------------ */
  }
  else if (y <= four) {
    xnum = c[8] * y;
    xden = y;
    for (i = 1; i <= 7; ++i) {
      xnum = (xnum + c[i - 1]) * y;
      xden = (xden + d[i - 1]) * y;
    }
    *result = (xnum + c[7]) / (xden + d[7]);
    if (jint != 2) {
      ysq = floor(y * sixten) / sixten;
      del = (y - ysq) * (y + ysq);
      *result = exp(-ysq * ysq) * exp(-del) * *result;
    }
    /* ------------------------------------------------------------------ */
    /*  Evaluate  erfc  for |X| > 4.0 */
    /* ------------------------------------------------------------------ */
  }
  else {
    *result = zero;
    if (y >= xbig) {
      if (jint != 2 || y >= xmax) {
	goto L300;
      }
      if (y >= xhuge) {
	*result = sqrpi / y;
	goto L300;
      }
    }
    ysq = one / (y * y);
    xnum = p[5] * ysq;
    xden = ysq;
    for (i = 1; i <= 4; ++i) {
      xnum = (xnum + p[i - 1]) * ysq;
      xden = (xden + q[i - 1]) * ysq;
    }
    *result = ysq * (xnum + p[4]) / (xden + q[4]);
    *result = (sqrpi - *result) / y;
    if (jint != 2) {
      ysq = floor(y * sixten) / sixten;
      del = (y - ysq) * (y + ysq);
      *result = exp(-ysq * ysq) * exp(-del) * *result;
    }
  }
  /* ------------------------------------------------------------------ */
  /*  Fix up for negative argument, erf, etc. */
  /* ------------------------------------------------------------------ */
 L300:
  if (jint == 0) {
    *result = half - *result + half;
    if (x < zero) {
      *result = -(*result);
    }
  }
  else if (jint == 1) {
    if (x < zero) {
      *result = two - *result;
    }
  }
  else {
    if (x < zero) {
      if (x < xneg) {
	*result = xinf;
      }
      else {
	ysq = -floor(-(x * sixten)) / sixten;
	del = (x - ysq) * (x + ysq);
	y = exp(ysq * ysq) * exp(del);
	*result = y + y - *result;
      }
    }
  }
  return;
}

#ifdef DEBUG
double derf_ P1C(double *, x)
{
  int jint;
  double result;

  /* This subprogram computes approximate values for erf(x). */
  /*   (see comments heading CALERF). */
  /*   Author/date: W. J. Cody, January 8, 1985 */

  jint = 0;
  calerf(*x, &result, jint);
  return result;
}

double derfc_ P1C(double *, x)
{
  int jint;
  double result;

  /* This subprogram computes approximate values for erfc(x). */
  /*   (see comments heading CALERF). */
  /*   Author/date: W. J. Cody, January 8, 1985 */

  jint = 1;
  calerf(*x, &result, jint);
  return result;
}

double derfcx_ (double *, x)
{
  int jint;
  double result;

  /* This subprogram computes approximate values for exp(x*x) * erfc(x). */
  /*   (see comments heading CALERF). */
  /*   Author/date: W. J. Cody, March 30, 1987 */

  jint = 2;
  calerf(*x, &result, jint);
  return result;
}
#endif /* DEBUG */

#define SQRT2 1.414213562373095049

VOID normbase P2C(double *, x, double *, phi)
{
  double y;

  y = *x / SQRT2;
  if (y < 0) {
    calerf(-y, phi, 1);
    *phi = 0.5 * *phi;
  }
  else {
    calerf(y, phi, 1);
    *phi = 1.0 - 0.5 * *phi;
  }
}