1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
/* statistics - Basic statistical functions for XLISP-STAT. */
/* XLISP-STAT 2.1 Copyright (c) 1990, by Luke Tierney */
/* Additions to Xlisp 2.1, Copyright (c) 1989 by David Michael Betz */
/* You may give out copies of this software; for conditions see the */
/* file COPYING included with this distribution. */
#include "xlisp.h"
#include "xlstat.h"
typedef LVAL (*subrfun)(V);
LOCAL LVAL datareduce1 P4H(subrfun, subrfun, LVAL, int);
LVAL xssum(V) { return(datareduce1(xssum, xadd, cvfixnum((FIXTYPE) 0), FALSE)); }
LVAL xsprod(V) { return(datareduce1(xsprod, xmul, cvfixnum((FIXTYPE) 1), FALSE)); }
LVAL xsmin(V) { return(datareduce1(xsmin, xmin, NIL, FALSE)); }
LVAL xsmax(V) { return(datareduce1(xsmax, xmax, NIL, FALSE)); }
LVAL xscount(V) { return(datareduce1(xscount, xadd, cvfixnum((FIXTYPE) 0), TRUE)); }
LOCAL LVAL datareduce1 P4C(subrfun, f, subrfun, bf, LVAL, nullval, int, count)
{
LVAL fcn, x, result;
switch (xlargc) {
case 0: result = nullval; break;
case 1:
if (compoundp(peekarg(0))) {
xlstkcheck(2);
xlsave(x);
xlsave(fcn);
fcn = cvsubr(bf, SUBR, 0);
x = subr_map_elements(f);
x = compounddataseq(x);
result = reduce(fcn, x, FALSE, NIL);
xlpopn(2);
}
else result = (count) ? cvfixnum((FIXTYPE) 1) : xlgetarg();
break;
default:
xlsave1(x);
x = makearglist(xlargc, xlargv);
result = xlcallsubr1(f, x);
xlpop();
}
return(result);
}
LOCAL int all_simple P1C(LVAL, x)
{
int i, n;
switch (ntype(x)) {
case CONS:
for (; consp(x); x = cdr(x))
if (compoundp(car(x))) return(FALSE);
break;
case VECTOR:
n = getsize(x);
for (i = 0; i < n; i++)
if (compoundp(getelement(x, i))) return(FALSE);
break;
case TVEC:
break;
case SYMBOL:
if (null(x)) break;
/* else fall through */
default:
xlerror("not a sequence", x);
}
return(TRUE);
}
static LVAL lastcdr P1C(LVAL, x)
{
LVAL last = NIL;
for (; consp(x); x = cdr(x)) last = x;
return(last);
}
static LVAL elementlist P1C(LVAL, x)
{
LVAL next, last, result;
if (!compoundp(x)) result = consa(x);
else {
xlprot1(x);
x = compounddataseq(x);
x = (listp(x)) ? copylist(x) : coerce_to_list(x);
if (all_simple(x)) result = x;
else {
for (next = x; consp(next); next = cdr(next))
rplaca(next, elementlist(car(next)));
result = car(x);
last = lastcdr(car(x));
for (next = cdr(x); consp(next); next = cdr(next)) {
rplacd(last, car(next));
last = lastcdr(car(next));
}
}
xlpop();
}
return(result);
}
LVAL elementseq P1C(LVAL, x)
{
if (! compoundp(x)) xlerror("not a compound data item", x);
x = compounddataseq(x);
if (all_simple(x)) return(x);
else return(elementlist(x));
}
LVAL xselement_seq(V) { return(elementseq(xlgetarg())); }
static LVAL base_ifelse(V)
{
LVAL a, b, c;
a = xlgetarg();
b = xlgetarg();
c = xlgetarg();
xllastarg();
return((a != NIL) ? b : c);
}
LVAL xsifelse(V) { return(subr_map_elements(base_ifelse)); }
typedef struct {
double real, imag;
int complex;
} Number;
static VOID make_number P2C(Number *, num, LVAL, x)
{
if (realp(x)) {
num->real = makefloat(x);
num->imag = 0.0;
num->complex = FALSE;
}
else if (complexp(x)) {
num->real = makefloat(getreal(x));
num->imag = makefloat(getimag(x));
num->complex = TRUE;
}
else xlerror("not a number", x);
}
static VOID base_mean P3C(int *, count, Number *, mean, LVAL, x)
{
LVAL y;
Number num;
double c, p, q;
int i, n;
if (! compoundp(x)) {
c = *count; p = c / (c + 1.0); q = 1.0 - p;
make_number(&num, x);
mean->real = p * mean->real + q * num.real;
mean->complex = mean->complex || num.complex;
if (mean->complex) mean->imag = p * mean->imag + q * num.imag;
(*count)++;
}
else {
x = compounddataseq(x);
n = seqlen(x);
for (i = 0; i < n; i++) {
y = getnextelement(&x, i);
base_mean(count, mean, y);
}
}
}
LVAL xsmean(V)
{
Number mean;
int count;
LVAL x;
x = xlgetarg();
xllastarg();
mean.real = 0.0; mean.imag = 0.0; mean.complex = FALSE;
count = 0;
base_mean(&count, &mean, x);
if (mean.complex) return(newdcomplex(mean.real,mean.imag));
else return(cvflonum((FLOTYPE) mean.real));
}
LVAL xssample(V)
{
LVAL x, result, temp, elem;
int n, N, replace, i, j;
x = xlgaseq();
n = getfixnum(xlgafixnum());
N = seqlen(x);
replace = (moreargs()) ? (xlgetarg() != NIL) : FALSE;
xllastarg();
if (! replace && n > N) n = N;
xlstkcheck(4);
xlprotect(x);
xlsave(result);
xlsave(elem);
xlsave(temp);
x = (listp(x)) ? coerce_to_tvec(x, s_true) : copyvector(x);
result = NIL;
if (N > 0 && n > 0) {
for (i = 0; i < n; i++) {
j = (replace) ? osrand(N) : i + osrand(N - i);
elem = gettvecelement(x, j);
result = cons(elem, result);
if (! replace) { /* swap elements i and j */
temp = gettvecelement(x, i);
settvecelement(x, i, elem);
settvecelement(x, j, temp);
}
}
}
xlpopn(4);
return(result);
}
|