1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
|
;;;;
;;;; statistics.lsp XLISP-STAT statistics functions
;;;; XLISP-STAT 2.1 Copyright (c) 1990, by Luke Tierney
;;;; Additions to Xlisp 2.1, Copyright (c) 1989 by David Michael Betz
;;;; You may give out copies of this software; for conditions see the file
;;;; COPYING included with this distribution.
;;;;
(provide "stats")
; setf method for select function
(defsetf select set-select)
;;;;
;;;; Data File Reading
;;;;
(defun count-file-columns (fname)
"Args: (fname)
Returns the number of lisp items on the first nonblank line of file FNAME."
(with-open-file (f fname)
(if f
(let ((line (do ((line (read-line f) (read-line f)))
((or (null line) (< 0 (length line))) line))))
(if line
(with-input-from-string (s line)
(do ((n 0 (+ n 1)) (eof (gensym)))
((eq eof (read s nil eof)) n))))))))
(defvar *xlisptable* *readtable*)
(unless (fboundp 'open-file-dialog)
(defun open-file-dialog (&optional set)
(declare (ignore set))
(if (system-has-windows)
(get-string-dialog "Enter a data file name:")
(error "You must provide a file name explicitly"))))
(defun read-data-file (&optional (file (open-file-dialog t)))
"Args: (file)
Returns a list of all lisp objects in FILE. FILE can be a string or a symbol,
in which case the symbol'f print name is used."
(if file
(let ((oldtable *readtable*)
(oldbreak *breakenable*)
(eof (gensym)))
(setq *readtable* *xlisptable*)
(setq *breakenable* nil)
(with-open-file (f file)
(if f
(unwind-protect
(do* ((r (read f nil eof) (read f nil eof))
(x (list nil))
(tail x (cdr tail)))
((eq r eof) (cdr x))
(setf (cdr tail) (list r)))
(setq *breakenable* oldbreak)
(setq *readtable* oldtable)))))))
;;; New definition to avoid stack size limit in apply
(defun read-data-columns (&optional (file (open-file-dialog t))
(cols (if file
(count-file-columns file))))
"Args: (&optional file cols)
Reads the data in FILE as COLS columns and returns a list of lists representing the columns."
(if (and file cols)
(transpose (split-list (read-data-file file) cols))))
(defun load-data (file)
"Args: (file)
Read in data file from the data examples library."
(load (merge-pathnames file
(make-pathname :directory '(:relative "Data")))))
(defun load-example (file)
"Args: (file)
Read in lisp example file from the examples library."
(load (merge-pathnames file
(make-pathname :directory '(:relative "Examples")))))
;;;;
;;;; Listing and Saving Variables and Functions
;;;;
(defvar *variables* nil)
(defvar *ask-on-redefine* nil)
(defmacro def (symbol value)
"Syntax: (def var form)
VAR is not evaluated and must be a symbol. Assigns the value of FORM to
VAR and adds VAR to the list *VARIABLES* of def'ed variables. Returns VAR.
If VAR is already bound and the global variable *ASK-ON-REDEFINE*
is not nil then you are asked if you want to redefine the variable."
`(unless (and *ask-on-redefine*
(boundp ',symbol)
(not (y-or-n-p "Variable has a value. Redefine?")))
(pushnew ',symbol *variables*)
(setf ,symbol ,value)
',symbol))
(defun variables ()
"Args:()
Returns a list of the names of all def'ed variables."
(sort (copy-list *variables*) #'string<=))
;;**** modify to use with-open-file
(defun savevar (vars file)
"Args: (vars file-name-root)
VARS is a symbol or a list of symbols. FILE-NAME-ROOT is a string (or a symbol
whose print name is used) not endinf in .lsp. The VARS and their current values
are written to the file FILE-NAME-ROOT.lsp in a form suitable for use with the
load command."
(let ((f (open (concatenate 'string (string file) ".lsp")
:direction :output))
(vars (if (consp vars) vars (list vars)))
(oldbreak *breakenable*))
(setq *breakenable* nil)
(unwind-protect
(mapcar
(lambda (x)
(if (objectp (symbol-value x))
(print `(def ,x ,(send (symbol-value x) :save)) f)
(print `(def ,x ',(symbol-value x)) f)))
vars)
(setq *breakenable* oldbreak)
(close f))
vars))
(defun undef (v)
"Args: (v)
If V is the symbol of a defined variable the variable it is unbound and
removed from the list of defined variables. If V is a list of variable
names each is unbound and removed. Returns V."
(dolist (s (if (listp v) v (list v)))
(when (member s *variables*)
(setq *variables* (delete s *variables*))
(makunbound s)))
v)
;;;;
;;;; Basic Summary Statistics
;;;;
(defun standard-deviation (x)
"Args: (x)
Returns the standard deviation of the elements x. Vector reducing."
(let ((n (count-elements x))
(r (- x (mean x))))
(sqrt (* (mean (* r r)) (/ n (- n 1))))))
(defun quantile (x p)
"Args: (x p)
Returns the P-th quantile(s) of sequence X. P can be a number or a sequence."
(let* ((x (sort-data x))
(n (length x))
(np (* p (- n 1)))
(low (floor np))
(high (ceiling np)))
(/ (+ (select x low) (select x high)) 2)))
(defun median (x)
"Args: (x)
Returns the median of the elements of X."
(quantile x 0.5))
(defun interquartile-range (x)
"Args: (number-data)
Returns the interquartile range of the elements of X."
(apply #'- (quantile x '(0.75 0.25))))
(defun fivnum (x)
"Args: (number-data)
Returns the five number summary (min, 1st quartile, medinan, 3rd quartile,
max) of the elements X."
(quantile x '(0 .25 .5 .75 1)))
(defun covariance-matrix (&rest args)
"Args: (&rest args)
Returns the sample covariance matrix of the data columns in ARGS. ARGS may
consist of lists, vectors or matrices."
(let ((columns (apply #'append
(mapcar (lambda (x)
(if (matrixp x) (column-list x) (list x)))
args))))
(/ (cross-product (apply #'bind-columns
(- columns (mapcar #'mean columns))))
(- (length (car columns)) 1))))
;;;;
;;;; Basic Sequence Operations
;;;;
(defun difference (x)
"Args: (x)
Returns differences for a sequence X."
(let ((n (length x)))
(- (select x (iseq 1 (1- n))) (select x (iseq 0 (- n 2))))))
(defun rseq (a b num)
"Args: (a b num)
Returns a list of NUM equally spaced points starting at A and ending at B."
(+ a (* (iseq 0 (1- num)) (/ (- b a) (1- num)))))
;;;;
;;;; Linear Algebra Functions
;;;;
(defun matrix (dim data)
"Args: (dim data)
returns a matrix of dimensions DIM initialized using sequence DATA
in row major order."
(let ((dim (coerce dim 'list))
(data (coerce data 'list)))
(make-array dim :initial-contents (split-list data (nth 1 dim)))))
#|
(defun print-matrix (a &optional (stream *standard-output*))
"Args: (matrix &optional stream)
Prints MATRIX to STREAM in a nice form that is still machine readable"
(unless (matrixp a) (error "not a matrix - ~a" a))
(let ((size (min 15 (max (map-elements #'flatsize a)))))
(format stream "#2a(~%")
(dolist (x (row-list a))
(format stream " (")
(let ((n (length x)))
(dotimes (i n)
(let ((y (aref x i)))
(cond
((integerp y) (format stream "~vd" size y))
((floatp y) (format stream "~vg" size y))
(t (format stream "~va" size y))))
(if (< i (- n 1)) (format stream " "))))
(format stream ")~%"))
(format stream " )~%")
nil))
|#
;; **** temporary modification for new printing -- needs rethinking
(defun print-matrix (a &optional (stream *standard-output*)
&key (float-digits 6))
"Args: (matrix &optional stream &key (float-digits 6))
Prints MATRIX to STREAM in a nice form that is still machine readable"
(unless (matrixp a) (error "not a matrix - ~a" a))
(let ((float-size (+ 7 float-digits))
(size 0))
(map-elements
#'(lambda (x)
(setf size
(max size
(cond
((floatp x) float-size)
((integerp x) (+ (flatsize x) 4))
(t (flatsize x))))))
a)
(format stream "#2a(~%")
(dolist (x (row-list a))
(format stream " (")
(let ((n (length x)))
(dotimes (i n)
(let ((y (aref x i)))
(cond
((integerp y) (format stream "~vd~4@t" (- size 4) y))
((floatp y) (format stream "~v,vg" size float-digits y))
(t (format stream "~va" size y))))
(if (< i (- n 1)) (format stream " "))))
(format stream ")~%"))
(format stream " )~%")
nil))
(defun array-to-nested-list (array)
(let ((n (array-rank array))
(alist (combine array)))
(do ((i (- n 1) (- i 1)))
((<= i 0) alist)
(setf alist (split-list alist (array-dimension array i))))))
(defun solve (a b)
"Args: (a b)
Solves A x = B using LU decomposition and backsolving. B can be a sequence
or a matrix."
(let ((lu (lu-decomp a)))
(if (matrixp b)
(apply #'bind-columns
(mapcar #'(lambda (x) (lu-solve lu x)) (column-list b)))
(lu-solve lu b))))
(defun backsolve (a b)
"Args: (a b)
Solves A x = B by backsolving, assuming A is upper triangular. B must be a
sequence. For use with qr-decomp."
(let* ((n (length b))
(sol (make-array n)))
(dotimes (i n)
(let* ((k (- n i 1))
(val (elt b k)))
(dotimes (j i)
(let ((l (- n j 1)))
(setq val (- val (* (aref sol l) (aref a k l))))))
(setf (aref sol k) (/ val (aref a k k)))))
(if (listp b) (coerce sol 'list) sol)))
(defun eigenvalues (a)
"Args: (a)
Returns list of eigenvalues of square, symmetric matrix A"
(first (eigen a)))
(defun eigenvectors (a)
"Args: (a)
Returns list of eigenvectors of square, symmetric matrix A"
(second (eigen a)))
(defun accumulate (f s)
"Args: (f s)
Accumulates elements of sequence S using binary function F.
(accumulate #'+ x) returns the cumulative sum of x."
(let* ((result (list (elt s 0)))
(tail result))
(flet ((acc (dummy x)
(declare (ignore dummy))
(rplacd tail (list (funcall f (first tail) x)))
(setf tail (cdr tail))))
(reduce #'acc s))
(if (vectorp s) (coerce result 'vector) result)))
(defun cumsum (x)
"Args: (x)
Returns the cumulative sum of X."
(accumulate #'+ x))
(defun combine (&rest args)
"Args (&rest args)
Returns sequence of elements of all arguments."
(copy-seq (element-seq args)))
(defun lowess (x y &key (f .25) (steps 2) (delta -1) sorted)
"Args: (x y &key (f .25) (steps 2) delta sorted)
Returns (list X YS) with YS the LOWESS fit. F is the fraction of data used for
each point, STEPS is the number of robust iterations. Fits for points within
DELTA of each other are interpolated linearly. If the X values setting SORTED
to T speeds up the computation."
(multiple-value-bind
(x y)
(let ((x (coerce x '(vector c-double)))
(y (coerce y '(vector c-double))))
(if sorted
(values x y)
(let ((ord (order x)))
(values (select x ord) (select y ord)))))
(let* ((n (length x))
(ys (make-array n :element-type 'c-double))
(rw (make-array n :element-type 'c-double))
(res (make-array n :element-type 'c-double))
(delta (if (> delta 0.0) delta (/ (- (max x) (min x)) 50))))
(when (base-lowess x y n f steps delta ys rw res)
(error "bad lowess data"))
(list (coerce x 'list) (coerce ys 'list)))))
(defparameter *default-smoother-points* 30)
(defun spline (x y &key (xvals *default-smoother-points*))
"Args: (x y &key xvals)
Returns list of x and y values of natural cubic spline interpolation of (X,Y).
X must be strictly increasing. XVALS can be an integer, the number of equally
spaced points to use in the range of X, or it can be a sequence of points at
which to interpolate."
(multiple-value-bind
(n x y ns xs ys)
(get-smoother-data x y xvals t)
(let ((work (make-array (* 2 n) :element-type 'c-double)))
(when (base-spline n x y ns xs ys work) (error "bad spline data"))
(list (coerce xs 'list) (coerce ys 'list)))))
(defun kernel-dens (x &key
(xvals *default-smoother-points*)
(width -1.0)
(type 'B))
"Args: (x &key xvals width type)
Returns list of x and y values of kernel density estimate of X. XVALS can be an
integer, the number of equally spaced points to use in the range of X, or it
can be a sequence of points at which to interpolate. WIDTH specifies the
window width. TYPE specifies the lernel and should be one of the symbols G, T,
U or B for gaussian, triangular, uniform or bisquare. The default is B."
(multiple-value-bind
(n x y ns xs ys)
(get-smoother-data x nil xvals nil)
(when (base-kernel-smooth n x y ns xs ys width type)
(error "bad data for smoother"))
(list (coerce xs 'list) (coerce ys 'list))))
(defun kernel-smooth (x y &key
(xvals *default-smoother-points*)
(width -1.0)
(type 'B))
"Args: (x y &key xvals width type)
Returns list of x and y values of kernel smooth of (X,Y). XVALS can be an
integer, the number of equally spaced points to use in the range of X, or it
can be a sequence of points at which to interpolate. WIDTH specifies the
window width. TYPE specifies the lernel and should be one of the symbols G, T,
U or B for Gaussian, triangular, uniform or bisquare. The default is B."
(multiple-value-bind
(n x y ns xs ys)
(get-smoother-data x y xvals t)
(when (base-kernel-smooth n x y ns xs ys width type)
(error "bad data for smoother"))
(list (coerce xs 'list) (coerce ys 'list))))
;;;;
;;;; Sorting Functions
;;;; (Moved to Lisp since MWERKS qsort is awful)
;;;;
(defun sort-data (x)
(let ((xlist (if (listp x)
(copy-list x)
(coerce (compound-data-seq x) 'list))))
(sort xlist #'sort-data<)))
(defun order (x)
(let* ((xlist (if (listp x) x (coerce (compound-data-seq x) 'list)))
(data (mapcar #'cons xlist (iseq (length xlist))))
(sdata (sort data #'order<)))
(mapcar #'cdr sdata)))
(defun xlisp::make-compound (form seq)
(cond
((listp form) (coerce seq 'list))
((stringp form) (error "not a combound data item - ~s" seq))
;;**** preserve element type??
((vectorp form) (coerce seq 'vector))
((arrayp form)
(make-array (array-dimensions form) :displaced-to (coerce seq 'vector)))
(t (error "not a combound data item - ~s" seq))))
(defun rank (x) (xlisp::make-compound x (order (order x))))
|