File: hdwr.lsp

package info (click to toggle)
xlispstat 3.52.14-1
  • links: PTS
  • area: main
  • in suites: potato
  • size: 7,560 kB
  • ctags: 12,676
  • sloc: ansic: 91,357; lisp: 21,759; sh: 1,525; makefile: 521; csh: 1
file content (311 lines) | stat: -rw-r--r-- 9,051 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
; CONVERTED FOR 2.0, but untested.
; -*-Lisp-*-
;
; Jwahar R. Bammi
; A simple description of hardware objects using xlisp
; Mix and match instances of the objects to create your
; organization.
; Needs:
; - busses and connection and the Design
;   Class that will have the connections as instance vars.
; - Print method for each object, that will display
;   the instance variables in an human readable form.
; Some day I will complete it.
;
;
;
; utility functions


; function to calculate 2^n

(defun pow2 (n)
	(pow2x n 1))


(defun pow2x (n sum)
       (cond((equal n 0) sum)
	    (t (pow2x (- n 1) (* sum 2)))))


; hardware objects

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;The class areg

(setq areg (send Class :new '(value nbits max_val min_val)))

; methods

; initialization method
; when a new instance is called for the user supplies
; the parameter nbits, from which the max_val & min_val are derived

(send areg :answer :isnew '(n)
	  '((send self :init n)
	    	self))

(send areg :answer :init '(n)
	  '((setq value ())
	    (setq nbits n)
	    (setq max_val (- (pow2 (- n 1)) 1))
	    (setq min_val (- (- 0 max_val) 1))))

; load areg

(send areg :answer :load '(val)
    '((cond ((> val max_val) (princ (list "The max value a "nbits" bit register can hold is "max_val"\n")))
	    ((< val min_val) (princ (list "The min value a "nbits" bit register can hold is "min_val"\n")))
	    (t (setq value val)))))

; see areg

(send areg :answer :see '()
      '((cond ((null value) (princ "Register does not contain a value\n"))
	      (t value))))
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; The class creg ( a register that can be cleared and incremented)
; subclass of a reg

(setq creg (send Class :new '() '() areg))

; it inherites all the instance vars & methods of a reg
; in addition to them it has the following methods

(send creg :answer :isnew '(n)
      '((send self :init n)
	self))

(send creg :answer :init '(n)
      '((setq value ())
	(setq nbits n)
	(setq max_val (- (pow2 n) 1))
	(setq min_val 0)))

(send creg :answer :clr '()
      '((setq value 0)))

(send creg :answer :inc '()
      '((cond ((null value) (princ "Register does not contain a value\n"))
	      (t (setq value (rem (+ value 1) (+ max_val 1)))))))

;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; Register bank
; contains n areg's n_bits each

(setq reg_bank (send Class :new '(regs n_regs curr_reg)))

;methods

(send reg_bank :answer :isnew '(n n_bits)
	  '((send self :init n n_bits)
	    self))

(send reg_bank :answer :init '(n n_bits)
	  '((setq regs ())
	    (setq n_regs (- n 1))
	    (send self :initx n n_bits)))

(send reg_bank :answer :initx '(n n_bits)
	  '((cond ((equal n 0) t)
	          (t (list (setq regs (cons (send areg :new n_bits) regs))
		  (send self :initx (setq n (- n 1)) n_bits))))))

(send reg_bank :answer :load '(reg val)
	  '((cond((> reg n_regs) (princ (list "Only "(+ 1 n_regs)" registers instantiated\n")))
		 (t (setq curr_reg (nth (+ reg 1) regs))
		    (curr_reg :load val)))))

(send reg_bank :answer :see '(reg)
	  '((cond((> reg n_regs) (princ (list "Only "(+ 1 n_regs)" registers instantiated\n")))
		 (t (setq curr_reg (nth (+ reg 1) regs))
		    (curr_reg :see)))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; The Class alu

;alu - an n bit alu

(setq alu (send Class :new '(n_bits maxs_val mins_val maxu_val minu_val nf zf vf cf)))

; methods

(send alu :answer :isnew '(n)
     '((send self :init n)
       self))

(send alu :answer :init '(n)
     '((setq n_bits n)
       (setq maxu_val (- (pow2 n) 1))
       (setq maxs_val (- (pow2 (- n 1)) 1))
       (setq mins_val (- (- 0 maxs_val) 1))
       (setq minu_val 0)
       (setq nf 0)
       (setq zf 0)
       (setq vf 0)
       (setq cf 0)))

(send alu :answer :check_arith '(a b)
     '((cond ((and (send self :arith_range a) (send self :arith_range b)) t)
	     (t ()))))

(send alu :answer :check_logic '(a b)
     '((cond ((and (send self :logic_range a) (send self :logic_range b)) t)
	     (t ()))))

(send alu :answer :arith_range '(a)
     '((cond ((< a mins_val) (princ (list "Operand out of Range "a"\n")))
	     ((> a maxs_val) (princ (list "Operand out of range "a"\n")))
             (t t))))

(send alu :answer :logic_range '(a)
     '((cond ((< (abs a) minu_val) (princ (list "Operand out of Range "a"\n")))
             (t t))))

(send alu :answer :set_flags '(a b r)
     '((if (equal 0 r) ((setq zf 1)))
       (if (< r 0) ((setq nf 1)))
       (if (or (and (and (< a 0) (< 0 b)) (>= r 0))
		  (and (and (>= a 0) (>= b 0)) (< r 0))) ((setq vf 1)))
       (if (or (or (and (< a 0) (< b 0)) (and (< a 0) (>= r 0)))
		  (and (>= r 0) (< b 0))) ((setq cf 1)))))
       
(send alu :answer :add '(a b &aux result)
     '((cond ((null (send self :check_arith a b)) ())
	    (t (send self :clear_flags)
	       (setq result (+ a b))
	       (if (> result maxs_val) ((setq result (+ (- (rem result maxs_val) 1) mins_val))))
		   (if (< result mins_val) ((setq result (+ (rem result mins_val) (+ maxs_val 1)))))
	       (send self :set_flags a b result)
	       result))))

(send alu :answer :or '(a b &aux result)
     '((cond ((null (send self :check_logic a b)) ())
	    (t (send self :clear_flags)
	       (setq result (bit-ior a b))
	       (send self :set_flags a b result)
	       result))))

(send alu :answer :and '(a b &aux result)
     '((cond ((null (send self :check_logic a b)) ())
	    (t (send self :clear_flags)
	       (setq result (bit-and a b))
	       (send self :set_flags a b result)
	       result))))

(send alu :answer :not '(a  &aux result)
     '((cond ((null (send self :check_logic a 0)) ())
	    (t (send self :clear_flags)
	       (setq result (bit-not a))
	       (send self :set_flags a 0 result)
	       result))))	       

(send alu :answer :subtract '(a b)
     '((send self '+ a (- 0 b))))

(send alu :answer :passa '(a)
     '(a))

(send alu :answer :zero '()
     '(0))

(send alu :answer :com '(a)
     '((send self :- 0 a)))

(send alu :answer :status '()
     '((princ (list "NF "nf"\n"))
       (princ (list "ZF "zf"\n"))
       (princ (list "CF "cf"\n"))
       (princ (list "VF "vf"\n"))))

(send alu :answer :clear_flags '()
     '((setq nf 0)
       (setq zf 0)
       (setq cf 0)
       (setq vf 0)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; The class Memory
;

(setq memory (send Class :new '(nabits ndbits maxu_val maxs_val mins_val max_addr undef memry)))

; methods

(send memory :answer :isnew '(addr_bits data_bits)
     '((send self :init addr_bits data_bits)
       self))

(send memory :answer :init '(addr_bits data_bits)
     '((setq nabits addr_bits)
       (setq ndbits data_bits)
       (setq maxu_val (- (pow2 data_bits) 1))
       (setq max_addr (- (pow2 addr_bits) 1))
       (setq maxs_val (- (pow2 (- data_bits 1)) 1))
       (setq mins_val (- 0 (pow2 (- data_bits 1))))
       (setq undef (+ maxu_val 1))
       (setq memry (array :new max_addr undef))))


(send memory :answer :load '(loc val)
     '((cond ((> (abs loc) max_addr) (princ (list "Address "loc" out of range\n")))
	     ((< val 0) (princ (list "Cant store "val" in "ndbits" bits\n")))
	     ((> val maxu_val) (princ (list "Cant store "val" in "ndbits" bits\n")))
	     (t (memry :load loc val)))))

(send memory :answer :write '(loc val)
     '((cond ((> (abs loc) max_addr) (princ (list "Address "loc" out of range\n")))
	     ((> val maxs_val) (princ (list "Cant store "val" in "ndbits" bits\n")))
	     ((< val mins_val) (princ (list "Cant store "val" in "ndbits" bits\n")))
	     (t (memry :load loc val)))))


(send memory :answer :read '(loc &aux val)
     '((cond ((> (abs loc) max_addr) (princ (list "Address "loc" out of range\n")))
	     (t (setq val (memry :see loc))
		(cond ((equal undef val) (princ (list "Address "loc" read before write\n")))
		      (t val))))))


;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; The class array

(setq array (send Class :new '(arry)))

; methods

(send array :answer :isnew '(n val)
       '((send self :init n val)
	 self))

(send array :answer :init '(n val)
	'((cond ((< n 0) t)
	      (t (setq arry (cons val arry))
		 (send self :init (- n 1) val)))))

(send array :answer :see '(n)
	       '((nth (+ n 1) arry)))


(send array :answer :load '(n val &aux left right temp)
       '((setq left (send self :left_part n arry temp))
	 (setq right (send self :right_part n arry))
	 (setq arry (append left (list val)))
	 (setq arry (append arry right))
	 val))

(send array :answer :left_part '(n ary left)
       '((cond ((equal n 0) (reverse left))
	       (t (setq left (cons (car ary) left))
		  (send self :left_part (- n 1) (cdr ary) left)))))

(send array :answer :right_part '(n ary &aux right)
       '((cond ((equal n 0) (cdr ary))
	       (t (send self :right_part (- n 1) (cdr ary))))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;