File: jmemmgr.c

package info (click to toggle)
xloadimage 4.1-25
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster, sid
  • size: 4,820 kB
  • sloc: ansic: 36,084; asm: 284; makefile: 282; sh: 280
file content (1102 lines) | stat: -rw-r--r-- 37,738 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
/*
 * jmemmgr.c
 *
 * Copyright (C) 1991, 1992, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file provides the standard system-independent memory management
 * routines.  This code is usable across a wide variety of machines; most
 * of the system dependencies have been isolated in a separate file.
 * The major functions provided here are:
 *   * bookkeeping to allow all allocated memory to be freed upon exit;
 *   * policy decisions about how to divide available memory among the
 *     various large arrays;
 *   * control logic for swapping virtual arrays between main memory and
 *     backing storage.
 * The separate system-dependent file provides the actual backing-storage
 * access code, and it contains the policy decision about how much total
 * main memory to use.
 * This file is system-dependent in the sense that some of its functions
 * are unnecessary in some systems.  For example, if there is enough virtual
 * memory so that backing storage will never be used, much of the big-array
 * control logic could be removed.  (Of course, if you have that much memory
 * then you shouldn't care about a little bit of unused code...)
 *
 * These routines are invoked via the methods alloc_small, free_small,
 * alloc_medium, free_medium, alloc_small_sarray, free_small_sarray,
 * alloc_small_barray, free_small_barray, request_big_sarray,
 * request_big_barray, alloc_big_arrays, access_big_sarray, access_big_barray,
 * free_big_sarray, free_big_barray, and free_all.
 */

#define AM_MEMORY_MANAGER	/* we define big_Xarray_control structs */

#include "jinclude.h"
#include "jmemsys.h"		/* import the system-dependent declarations */

#ifndef NO_GETENV
#ifdef INCLUDES_ARE_ANSI
#include <stdlib.h>		/* to declare getenv() */
#else
extern char * getenv PP((const char * name));
#endif
#endif


/*
 * On many systems it is not necessary to distinguish alloc_small from
 * alloc_medium; the main case where they must be distinguished is when
 * FAR pointers are distinct from regular pointers.  However, you might
 * want to keep them separate if you have different system-dependent logic
 * for small and large memory requests (i.e., jget_small and jget_large
 * do different things).
 */

#ifdef NEED_FAR_POINTERS
#define NEED_ALLOC_MEDIUM	/* flags alloc_medium really exists */
#endif


/*
 * Many machines require storage alignment: longs must start on 4-byte
 * boundaries, doubles on 8-byte boundaries, etc.  On such machines, malloc()
 * always returns pointers that are multiples of the worst-case alignment
 * requirement, and we had better do so too.  This means the headers that
 * we tack onto allocated structures had better have length a multiple of
 * the alignment requirement.
 * There isn't any really portable way to determine the worst-case alignment
 * requirement.  In this code we assume that the alignment requirement is
 * multiples of sizeof(align_type).  Here we define align_type as double;
 * with this definition, the code will run on all machines known to me.
 * If your machine has lesser alignment needs, you can save a few bytes
 * by making align_type smaller.
 */

typedef double align_type;


/*
 * Some important notes:
 *   The allocation routines provided here must never return NULL.
 *   They should exit to error_exit if unsuccessful.
 *
 *   It's not a good idea to try to merge the sarray and barray routines,
 *   even though they are textually almost the same, because samples are
 *   usually stored as bytes while coefficients are shorts.  Thus, in machines
 *   where byte pointers have a different representation from word pointers,
 *   the resulting machine code could not be the same.
 */


static external_methods_ptr methods; /* saved for access to error_exit */


#ifdef MEM_STATS		/* optional extra stuff for statistics */

/* These macros are the assumed overhead per block for malloc().
 * They don't have to be accurate, but the printed statistics will be
 * off a little bit if they are not.
 */
#define MALLOC_OVERHEAD  (SIZEOF(void *)) /* overhead for jget_small() */
#define MALLOC_FAR_OVERHEAD  (SIZEOF(void FAR *)) /* for jget_large() */

static long total_num_small = 0;	/* total # of small objects alloced */
static long total_bytes_small = 0;	/* total bytes requested */
static long cur_num_small = 0;		/* # currently alloced */
static long max_num_small = 0;		/* max simultaneously alloced */

#ifdef NEED_ALLOC_MEDIUM
static long total_num_medium = 0;	/* total # of medium objects alloced */
static long total_bytes_medium = 0;	/* total bytes requested */
static long cur_num_medium = 0;		/* # currently alloced */
static long max_num_medium = 0;		/* max simultaneously alloced */
#endif

static long total_num_sarray = 0;	/* total # of sarray objects alloced */
static long total_bytes_sarray = 0;	/* total bytes requested */
static long cur_num_sarray = 0;		/* # currently alloced */
static long max_num_sarray = 0;		/* max simultaneously alloced */

static long total_num_barray = 0;	/* total # of barray objects alloced */
static long total_bytes_barray = 0;	/* total bytes requested */
static long cur_num_barray = 0;		/* # currently alloced */
static long max_num_barray = 0;		/* max simultaneously alloced */


LOCAL void
print_mem_stats (void)
{
  /* since this is only a debugging stub, we can cheat a little on the
   * trace message mechanism... helpful 'cuz trace_message can't handle longs.
   */
  fprintf(stderr, "total_num_small = %ld\n", total_num_small);
  fprintf(stderr, "total_bytes_small = %ld\n", total_bytes_small);
  if (cur_num_small)
    fprintf(stderr, "cur_num_small = %ld\n", cur_num_small);
  fprintf(stderr, "max_num_small = %ld\n", max_num_small);
  
#ifdef NEED_ALLOC_MEDIUM
  fprintf(stderr, "total_num_medium = %ld\n", total_num_medium);
  fprintf(stderr, "total_bytes_medium = %ld\n", total_bytes_medium);
  if (cur_num_medium)
    fprintf(stderr, "cur_num_medium = %ld\n", cur_num_medium);
  fprintf(stderr, "max_num_medium = %ld\n", max_num_medium);
#endif
  
  fprintf(stderr, "total_num_sarray = %ld\n", total_num_sarray);
  fprintf(stderr, "total_bytes_sarray = %ld\n", total_bytes_sarray);
  if (cur_num_sarray)
    fprintf(stderr, "cur_num_sarray = %ld\n", cur_num_sarray);
  fprintf(stderr, "max_num_sarray = %ld\n", max_num_sarray);
  
  fprintf(stderr, "total_num_barray = %ld\n", total_num_barray);
  fprintf(stderr, "total_bytes_barray = %ld\n", total_bytes_barray);
  if (cur_num_barray)
    fprintf(stderr, "cur_num_barray = %ld\n", cur_num_barray);
  fprintf(stderr, "max_num_barray = %ld\n", max_num_barray);
}

#endif /* MEM_STATS */


LOCAL void
out_of_memory (int which)
/* Report an out-of-memory error and stop execution */
/* If we compiled MEM_STATS support, report alloc requests before dying */
{
#ifdef MEM_STATS
  if (methods->trace_level <= 0) /* don't do it if free_all() will */
    print_mem_stats();		/* print optional memory usage statistics */
#endif
  ERREXIT1(methods, "Insufficient memory (case %d)", which);
}


/*
 * Management of "small" objects.
 * These are all-in-memory, and are in near-heap space on an 80x86.
 */

typedef union small_struct * small_ptr;

typedef union small_struct {
	small_ptr next;		/* next in list of allocated objects */
	align_type dummy;	/* ensures alignment of following storage */
      } small_hdr;

static small_ptr small_list;	/* head of list */


METHODDEF void *
alloc_small (size_t sizeofobject)
/* Allocate a "small" object */
{
  small_ptr result;

  sizeofobject += SIZEOF(small_hdr); /* add space for header */

#ifdef MEM_STATS
  total_num_small++;
  total_bytes_small += sizeofobject + MALLOC_OVERHEAD;
  cur_num_small++;
  if (cur_num_small > max_num_small) max_num_small = cur_num_small;
#endif

  result = (small_ptr) jget_small(sizeofobject);
  if (result == NULL)
    out_of_memory(1);

  result->next = small_list;
  small_list = result;
  result++;			/* advance past header */

  return (void *) result;
}


METHODDEF void
free_small (void *ptr)
/* Free a "small" object */
{
  small_ptr hdr;
  small_ptr * llink;

  hdr = (small_ptr) ptr;
  hdr--;			/* point back to header */

  /* Remove item from list -- linear search is fast enough */
  llink = &small_list;
  while (*llink != hdr) {
    if (*llink == NULL)
      ERREXIT(methods, "Bogus free_small request");
    llink = &( (*llink)->next );
  }
  *llink = hdr->next;

  jfree_small((void *) hdr);

#ifdef MEM_STATS
  cur_num_small--;
#endif
}


/*
 * Management of "medium-size" objects.
 * These are just like small objects except they are in the FAR heap.
 */

#ifdef NEED_ALLOC_MEDIUM

typedef union medium_struct FAR * medium_ptr;

typedef union medium_struct {
	medium_ptr next;	/* next in list of allocated objects */
	align_type dummy;	/* ensures alignment of following storage */
      } medium_hdr;

static medium_ptr medium_list;	/* head of list */


METHODDEF void FAR *
alloc_medium (size_t sizeofobject)
/* Allocate a "medium-size" object */
{
  medium_ptr result;

  sizeofobject += SIZEOF(medium_hdr); /* add space for header */

#ifdef MEM_STATS
  total_num_medium++;
  total_bytes_medium += sizeofobject + MALLOC_FAR_OVERHEAD;
  cur_num_medium++;
  if (cur_num_medium > max_num_medium) max_num_medium = cur_num_medium;
#endif

  result = (medium_ptr) jget_large(sizeofobject);
  if (result == NULL)
    out_of_memory(2);

  result->next = medium_list;
  medium_list = result;
  result++;			/* advance past header */

  return (void FAR *) result;
}


METHODDEF void
free_medium (void FAR *ptr)
/* Free a "medium-size" object */
{
  medium_ptr hdr;
  medium_ptr FAR * llink;

  hdr = (medium_ptr) ptr;
  hdr--;			/* point back to header */

  /* Remove item from list -- linear search is fast enough */
  llink = (medium_ptr FAR *) &medium_list;
  while (*llink != hdr) {
    if (*llink == NULL)
      ERREXIT(methods, "Bogus free_medium request");
    llink = &( (*llink)->next );
  }
  *llink = hdr->next;

  jfree_large((void FAR *) hdr);

#ifdef MEM_STATS
  cur_num_medium--;
#endif
}

#endif /* NEED_ALLOC_MEDIUM */


/*
 * Management of "small" (all-in-memory) 2-D sample arrays.
 * The pointers are in near heap, the samples themselves in FAR heap.
 * The header structure is adjacent to the row pointers.
 * To minimize allocation overhead and to allow I/O of large contiguous
 * blocks, we allocate the sample rows in groups of as many rows as possible
 * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
 * Note that the big-array control routines, later in this file, know about
 * this chunking of rows ... and also how to get the rowsperchunk value!
 */

typedef struct small_sarray_struct * small_sarray_ptr;

typedef struct small_sarray_struct {
	small_sarray_ptr next;	/* next in list of allocated sarrays */
	long numrows;		/* # of rows in this array */
	long rowsperchunk;	/* max # of rows per allocation chunk */
	JSAMPROW dummy;		/* ensures alignment of following storage */
      } small_sarray_hdr;

static small_sarray_ptr small_sarray_list; /* head of list */


METHODDEF JSAMPARRAY
alloc_small_sarray (long samplesperrow, long numrows)
/* Allocate a "small" (all-in-memory) 2-D sample array */
{
  small_sarray_ptr hdr;
  JSAMPARRAY result;
  JSAMPROW workspace;
  long rowsperchunk, currow, i;

#ifdef MEM_STATS
  total_num_sarray++;
  cur_num_sarray++;
  if (cur_num_sarray > max_num_sarray) max_num_sarray = cur_num_sarray;
#endif

  /* Calculate max # of rows allowed in one allocation chunk */
  rowsperchunk = MAX_ALLOC_CHUNK / (samplesperrow * SIZEOF(JSAMPLE));
  if (rowsperchunk <= 0)
      ERREXIT(methods, "Image too wide for this implementation");

  /* Get space for header and row pointers; this is always "near" on 80x86 */
  hdr = (small_sarray_ptr) alloc_small((size_t) (numrows * SIZEOF(JSAMPROW)
						 + SIZEOF(small_sarray_hdr)));

  result = (JSAMPARRAY) (hdr+1); /* advance past header */

  /* Insert into list now so free_all does right thing if I fail */
  /* after allocating only some of the rows... */
  hdr->next = small_sarray_list;
  hdr->numrows = 0;
  hdr->rowsperchunk = rowsperchunk;
  small_sarray_list = hdr;

  /* Get the rows themselves; on 80x86 these are "far" */
  currow = 0;
  while (currow < numrows) {
    rowsperchunk = MIN(rowsperchunk, numrows - currow);
#ifdef MEM_STATS
    total_bytes_sarray += rowsperchunk * samplesperrow * SIZEOF(JSAMPLE)
			  + MALLOC_FAR_OVERHEAD;
#endif
    workspace = (JSAMPROW) jget_large((size_t) (rowsperchunk * samplesperrow
						* SIZEOF(JSAMPLE)));
    if (workspace == NULL)
      out_of_memory(3);
    for (i = rowsperchunk; i > 0; i--) {
      result[currow++] = workspace;
      workspace += samplesperrow;
    }
    hdr->numrows = currow;
  }

  return result;
}


METHODDEF void
free_small_sarray (JSAMPARRAY ptr)
/* Free a "small" (all-in-memory) 2-D sample array */
{
  small_sarray_ptr hdr;
  small_sarray_ptr * llink;
  long i;

  hdr = (small_sarray_ptr) ptr;
  hdr--;			/* point back to header */

  /* Remove item from list -- linear search is fast enough */
  llink = &small_sarray_list;
  while (*llink != hdr) {
    if (*llink == NULL)
      ERREXIT(methods, "Bogus free_small_sarray request");
    llink = &( (*llink)->next );
  }
  *llink = hdr->next;

  /* Free the rows themselves; on 80x86 these are "far" */
  /* Note we only free the row-group headers! */
  for (i = 0; i < hdr->numrows; i += hdr->rowsperchunk) {
    jfree_large((void FAR *) ptr[i]);
  }

  /* Free header and row pointers */
  free_small((void *) hdr);

#ifdef MEM_STATS
  cur_num_sarray--;
#endif
}


/*
 * Management of "small" (all-in-memory) 2-D coefficient-block arrays.
 * This is essentially the same as the code for sample arrays, above.
 */

typedef struct small_barray_struct * small_barray_ptr;

typedef struct small_barray_struct {
	small_barray_ptr next;	/* next in list of allocated barrays */
	long numrows;		/* # of rows in this array */
	long rowsperchunk;	/* max # of rows per allocation chunk */
	JBLOCKROW dummy;	/* ensures alignment of following storage */
      } small_barray_hdr;

static small_barray_ptr small_barray_list; /* head of list */


METHODDEF JBLOCKARRAY
alloc_small_barray (long blocksperrow, long numrows)
/* Allocate a "small" (all-in-memory) 2-D coefficient-block array */
{
  small_barray_ptr hdr;
  JBLOCKARRAY result;
  JBLOCKROW workspace;
  long rowsperchunk, currow, i;

#ifdef MEM_STATS
  total_num_barray++;
  cur_num_barray++;
  if (cur_num_barray > max_num_barray) max_num_barray = cur_num_barray;
#endif

  /* Calculate max # of rows allowed in one allocation chunk */
  rowsperchunk = MAX_ALLOC_CHUNK / (blocksperrow * SIZEOF(JBLOCK));
  if (rowsperchunk <= 0)
      ERREXIT(methods, "Image too wide for this implementation");

  /* Get space for header and row pointers; this is always "near" on 80x86 */
  hdr = (small_barray_ptr) alloc_small((size_t) (numrows * SIZEOF(JBLOCKROW)
						 + SIZEOF(small_barray_hdr)));

  result = (JBLOCKARRAY) (hdr+1); /* advance past header */

  /* Insert into list now so free_all does right thing if I fail */
  /* after allocating only some of the rows... */
  hdr->next = small_barray_list;
  hdr->numrows = 0;
  hdr->rowsperchunk = rowsperchunk;
  small_barray_list = hdr;

  /* Get the rows themselves; on 80x86 these are "far" */
  currow = 0;
  while (currow < numrows) {
    rowsperchunk = MIN(rowsperchunk, numrows - currow);
#ifdef MEM_STATS
    total_bytes_barray += rowsperchunk * blocksperrow * SIZEOF(JBLOCK)
			  + MALLOC_FAR_OVERHEAD;
#endif
    workspace = (JBLOCKROW) jget_large((size_t) (rowsperchunk * blocksperrow
						 * SIZEOF(JBLOCK)));
    if (workspace == NULL)
      out_of_memory(4);
    for (i = rowsperchunk; i > 0; i--) {
      result[currow++] = workspace;
      workspace += blocksperrow;
    }
    hdr->numrows = currow;
  }

  return result;
}


METHODDEF void
free_small_barray (JBLOCKARRAY ptr)
/* Free a "small" (all-in-memory) 2-D coefficient-block array */
{
  small_barray_ptr hdr;
  small_barray_ptr * llink;
  long i;

  hdr = (small_barray_ptr) ptr;
  hdr--;			/* point back to header */

  /* Remove item from list -- linear search is fast enough */
  llink = &small_barray_list;
  while (*llink != hdr) {
    if (*llink == NULL)
      ERREXIT(methods, "Bogus free_small_barray request");
    llink = &( (*llink)->next );
  }
  *llink = hdr->next;

  /* Free the rows themselves; on 80x86 these are "far" */
  /* Note we only free the row-group headers! */
  for (i = 0; i < hdr->numrows; i += hdr->rowsperchunk) {
    jfree_large((void FAR *) ptr[i]);
  }

  /* Free header and row pointers */
  free_small((void *) hdr);

#ifdef MEM_STATS
  cur_num_barray--;
#endif
}



/*
 * About "big" array management:
 *
 * To allow machines with limited memory to handle large images,
 * all processing in the JPEG system is done a few pixel or block rows
 * at a time.  The above "small" array routines are only used to allocate
 * strip buffers (as wide as the image, but just a few rows high).
 * In some cases multiple passes must be made over the data.  In these
 * cases the "big" array routines are used.  The array is still accessed
 * a strip at a time, but the memory manager must save the whole array
 * for repeated accesses.  The intended implementation is that there is
 * a strip buffer in memory (as high as is possible given the desired memory
 * limit), plus a backing file that holds the rest of the array.
 *
 * The request_big_array routines are told the total size of the image (in case
 * it is useful to know the total file size that will be needed).  They are
 * also given the unit height, which is the number of rows that will be
 * accessed at once; the in-memory buffer should be made a multiple of
 * this height for best efficiency.
 *
 * The request routines create control blocks (and may open backing files),
 * but they don't create the in-memory buffers.  This is postponed until
 * alloc_big_arrays is called.  At that time the total amount of space needed
 * is known (approximately, anyway), so free memory can be divided up fairly.
 *
 * The access_big_array routines are responsible for making a specific strip
 * area accessible (after reading or writing the backing file, if necessary).
 * Note that the access routines are told whether the caller intends to modify
 * the accessed strip; during a read-only pass this saves having to rewrite
 * data to disk.
 *
 * The typical access pattern is one top-to-bottom pass to write the data,
 * followed by one or more read-only top-to-bottom passes.  However, other
 * access patterns may occur while reading.  For example, translation of image
 * formats that use bottom-to-top scan order will require bottom-to-top read
 * passes.  The memory manager need not support multiple write passes nor
 * funny write orders (meaning that rearranging rows must be handled while
 * reading data out of the big array, not while putting it in).
 *
 * In current usage, the access requests are always for nonoverlapping strips;
 * that is, successive access start_row numbers always differ by exactly the
 * unitheight.  This allows fairly simple buffer dump/reload logic if the
 * in-memory buffer is made a multiple of the unitheight.  It would be
 * possible to keep downsampled rather than fullsize data in the "big" arrays,
 * thus reducing temp file size, if we supported overlapping strip access
 * (access requests differing by less than the unitheight).  At the moment
 * I don't believe this is worth the extra complexity.
 */



/* The control blocks for virtual arrays.
 * System-dependent info for the associated backing store is hidden inside
 * the backing_store_info struct.
 */

struct big_sarray_control {
	long rows_in_array;	/* total virtual array height */
	long samplesperrow;	/* width of array (and of memory buffer) */
	long unitheight;	/* # of rows accessed by access_big_sarray() */
	JSAMPARRAY mem_buffer;	/* the in-memory buffer */
	long rows_in_mem;	/* height of memory buffer */
	long rowsperchunk;	/* allocation chunk size in mem_buffer */
	long cur_start_row;	/* first logical row # in the buffer */
	boolean dirty;		/* do current buffer contents need written? */
	boolean b_s_open;	/* is backing-store data valid? */
	big_sarray_ptr next;	/* link to next big sarray control block */
	backing_store_info b_s_info; /* System-dependent control info */
};

static big_sarray_ptr big_sarray_list; /* head of list */

struct big_barray_control {
	long rows_in_array;	/* total virtual array height */
	long blocksperrow;	/* width of array (and of memory buffer) */
	long unitheight;	/* # of rows accessed by access_big_barray() */
	JBLOCKARRAY mem_buffer;	/* the in-memory buffer */
	long rows_in_mem;	/* height of memory buffer */
	long rowsperchunk;	/* allocation chunk size in mem_buffer */
	long cur_start_row;	/* first logical row # in the buffer */
	boolean dirty;		/* do current buffer contents need written? */
	boolean b_s_open;	/* is backing-store data valid? */
	big_barray_ptr next;	/* link to next big barray control block */
	backing_store_info b_s_info; /* System-dependent control info */
};

static big_barray_ptr big_barray_list; /* head of list */


METHODDEF big_sarray_ptr
request_big_sarray (long samplesperrow, long numrows, long unitheight)
/* Request a "big" (virtual-memory) 2-D sample array */
{
  big_sarray_ptr result;

  /* get control block */
  result = (big_sarray_ptr) alloc_small(SIZEOF(struct big_sarray_control));

  result->rows_in_array = numrows;
  result->samplesperrow = samplesperrow;
  result->unitheight = unitheight;
  result->mem_buffer = NULL;	/* marks array not yet realized */
  result->b_s_open = FALSE;	/* no associated backing-store object */
  result->next = big_sarray_list; /* add to list of big arrays */
  big_sarray_list = result;

  return result;
}


METHODDEF big_barray_ptr
request_big_barray (long blocksperrow, long numrows, long unitheight)
/* Request a "big" (virtual-memory) 2-D coefficient-block array */
{
  big_barray_ptr result;

  /* get control block */
  result = (big_barray_ptr) alloc_small(SIZEOF(struct big_barray_control));

  result->rows_in_array = numrows;
  result->blocksperrow = blocksperrow;
  result->unitheight = unitheight;
  result->mem_buffer = NULL;	/* marks array not yet realized */
  result->b_s_open = FALSE;	/* no associated backing-store object */
  result->next = big_barray_list; /* add to list of big arrays */
  big_barray_list = result;

  return result;
}


METHODDEF void
alloc_big_arrays (long extra_small_samples, long extra_small_blocks,
		  long extra_medium_space)
/* Allocate the in-memory buffers for any unrealized "big" arrays */
/* 'extra' values are upper bounds for total future small-array requests */
/* and far-heap requests */
{
  long total_extra_space = extra_small_samples * SIZEOF(JSAMPLE)
			   + extra_small_blocks * SIZEOF(JBLOCK)
			   + extra_medium_space;
  long space_per_unitheight, maximum_space, avail_mem;
  long unitheights, max_unitheights;
  big_sarray_ptr sptr;
  big_barray_ptr bptr;

  /* Compute the minimum space needed (unitheight rows in each buffer)
   * and the maximum space needed (full image height in each buffer).
   * These may be of use to the system-dependent jmem_available routine.
   */
  space_per_unitheight = 0;
  maximum_space = total_extra_space;
  for (sptr = big_sarray_list; sptr != NULL; sptr = sptr->next) {
    if (sptr->mem_buffer == NULL) { /* if not realized yet */
      space_per_unitheight += sptr->unitheight *
			      sptr->samplesperrow * SIZEOF(JSAMPLE);
      maximum_space += sptr->rows_in_array *
		       sptr->samplesperrow * SIZEOF(JSAMPLE);
    }
  }
  for (bptr = big_barray_list; bptr != NULL; bptr = bptr->next) {
    if (bptr->mem_buffer == NULL) { /* if not realized yet */
      space_per_unitheight += bptr->unitheight *
			      bptr->blocksperrow * SIZEOF(JBLOCK);
      maximum_space += bptr->rows_in_array *
		       bptr->blocksperrow * SIZEOF(JBLOCK);
    }
  }

  if (space_per_unitheight <= 0)
    return;			/* no unrealized arrays, no work */

  /* Determine amount of memory to actually use; this is system-dependent. */
  avail_mem = jmem_available(space_per_unitheight + total_extra_space,
			     maximum_space);

  /* If the maximum space needed is available, make all the buffers full
   * height; otherwise parcel it out with the same number of unitheights
   * in each buffer.
   */
  if (avail_mem >= maximum_space)
    max_unitheights = 1000000000L;
  else {
    max_unitheights = (avail_mem - total_extra_space) / space_per_unitheight;
    /* If there doesn't seem to be enough space, try to get the minimum
     * anyway.  This allows a "stub" implementation of jmem_available().
     */
    if (max_unitheights <= 0)
      max_unitheights = 1;
  }

  /* Allocate the in-memory buffers and initialize backing store as needed. */

  for (sptr = big_sarray_list; sptr != NULL; sptr = sptr->next) {
    if (sptr->mem_buffer == NULL) { /* if not realized yet */
      unitheights = (sptr->rows_in_array + sptr->unitheight - 1L)
		    / sptr->unitheight;
      if (unitheights <= max_unitheights) {
	/* This buffer fits in memory */
	sptr->rows_in_mem = sptr->rows_in_array;
      } else {
	/* It doesn't fit in memory, create backing store. */
	sptr->rows_in_mem = max_unitheights * sptr->unitheight;
	jopen_backing_store(& sptr->b_s_info,
			    (long) (sptr->rows_in_array *
				    sptr->samplesperrow * SIZEOF(JSAMPLE)));
	sptr->b_s_open = TRUE;
      }
      sptr->mem_buffer = alloc_small_sarray(sptr->samplesperrow,
					    sptr->rows_in_mem);
      /* Reach into the small_sarray header and get the rowsperchunk field.
       * Yes, I know, this is horrible coding practice.
       */
      sptr->rowsperchunk =
	((small_sarray_ptr) sptr->mem_buffer)[-1].rowsperchunk;
      sptr->cur_start_row = 0;
      sptr->dirty = FALSE;
    }
  }

  for (bptr = big_barray_list; bptr != NULL; bptr = bptr->next) {
    if (bptr->mem_buffer == NULL) { /* if not realized yet */
      unitheights = (bptr->rows_in_array + bptr->unitheight - 1L)
		    / bptr->unitheight;
      if (unitheights <= max_unitheights) {
	/* This buffer fits in memory */
	bptr->rows_in_mem = bptr->rows_in_array;
      } else {
	/* It doesn't fit in memory, create backing store. */
	bptr->rows_in_mem = max_unitheights * bptr->unitheight;
	jopen_backing_store(& bptr->b_s_info,
			    (long) (bptr->rows_in_array *
				    bptr->blocksperrow * SIZEOF(JBLOCK)));
	bptr->b_s_open = TRUE;
      }
      bptr->mem_buffer = alloc_small_barray(bptr->blocksperrow,
					    bptr->rows_in_mem);
      /* Reach into the small_barray header and get the rowsperchunk field. */
      bptr->rowsperchunk =
	((small_barray_ptr) bptr->mem_buffer)[-1].rowsperchunk;
      bptr->cur_start_row = 0;
      bptr->dirty = FALSE;
    }
  }
}


LOCAL void
do_sarray_io (big_sarray_ptr ptr, boolean writing)
/* Do backing store read or write of a "big" sample array */
{
  long bytesperrow, file_offset, byte_count, rows, i;

  bytesperrow = ptr->samplesperrow * SIZEOF(JSAMPLE);
  file_offset = ptr->cur_start_row * bytesperrow;
  /* Loop to read or write each allocation chunk in mem_buffer */
  for (i = 0; i < ptr->rows_in_mem; i += ptr->rowsperchunk) {
    /* One chunk, but check for short chunk at end of buffer */
    rows = MIN(ptr->rowsperchunk, ptr->rows_in_mem - i);
    /* Transfer no more than fits in file */
    rows = MIN(rows, ptr->rows_in_array - (ptr->cur_start_row + i));
    if (rows <= 0)		/* this chunk might be past end of file! */
      break;
    byte_count = rows * bytesperrow;
    if (writing)
      (*ptr->b_s_info.write_backing_store) (& ptr->b_s_info,
					    (void FAR *) ptr->mem_buffer[i],
					    file_offset, byte_count);
    else
      (*ptr->b_s_info.read_backing_store) (& ptr->b_s_info,
					   (void FAR *) ptr->mem_buffer[i],
					   file_offset, byte_count);
    file_offset += byte_count;
  }
}


LOCAL void
do_barray_io (big_barray_ptr ptr, boolean writing)
/* Do backing store read or write of a "big" coefficient-block array */
{
  long bytesperrow, file_offset, byte_count, rows, i;

  bytesperrow = ptr->blocksperrow * SIZEOF(JBLOCK);
  file_offset = ptr->cur_start_row * bytesperrow;
  /* Loop to read or write each allocation chunk in mem_buffer */
  for (i = 0; i < ptr->rows_in_mem; i += ptr->rowsperchunk) {
    /* One chunk, but check for short chunk at end of buffer */
    rows = MIN(ptr->rowsperchunk, ptr->rows_in_mem - i);
    /* Transfer no more than fits in file */
    rows = MIN(rows, ptr->rows_in_array - (ptr->cur_start_row + i));
    if (rows <= 0)		/* this chunk might be past end of file! */
      break;
    byte_count = rows * bytesperrow;
    if (writing)
      (*ptr->b_s_info.write_backing_store) (& ptr->b_s_info,
					    (void FAR *) ptr->mem_buffer[i],
					    file_offset, byte_count);
    else
      (*ptr->b_s_info.read_backing_store) (& ptr->b_s_info,
					   (void FAR *) ptr->mem_buffer[i],
					   file_offset, byte_count);
    file_offset += byte_count;
  }
}


METHODDEF JSAMPARRAY
access_big_sarray (big_sarray_ptr ptr, long start_row, boolean writable)
/* Access the part of a "big" sample array starting at start_row */
/* and extending for ptr->unitheight rows.  writable is true if  */
/* caller intends to modify the accessed area. */
{
  /* debugging check */
  if (start_row < 0 || start_row+ptr->unitheight > ptr->rows_in_array ||
      ptr->mem_buffer == NULL)
    ERREXIT(methods, "Bogus access_big_sarray request");

  /* Make the desired part of the virtual array accessible */
  if (start_row < ptr->cur_start_row ||
      start_row+ptr->unitheight > ptr->cur_start_row+ptr->rows_in_mem) {
    if (! ptr->b_s_open)
      ERREXIT(methods, "Virtual array controller messed up");
    /* Flush old buffer contents if necessary */
    if (ptr->dirty) {
      do_sarray_io(ptr, TRUE);
      ptr->dirty = FALSE;
    }
    /* Decide what part of virtual array to access.
     * Algorithm: if target address > current window, assume forward scan,
     * load starting at target address.  If target address < current window,
     * assume backward scan, load so that target address is top of window.
     * Note that when switching from forward write to forward read, will have
     * start_row = 0, so the limiting case applies and we load from 0 anyway.
     */
    if (start_row > ptr->cur_start_row) {
      ptr->cur_start_row = start_row;
    } else {
      ptr->cur_start_row = start_row + ptr->unitheight - ptr->rows_in_mem;
      if (ptr->cur_start_row < 0)
	ptr->cur_start_row = 0;	/* don't fall off front end of file */
    }
    /* If reading, read in the selected part of the array. 
     * If we are writing, we need not pre-read the selected portion,
     * since the access sequence constraints ensure it would be garbage.
     */
    if (! writable) {
      do_sarray_io(ptr, FALSE);
    }
  }
  /* Flag the buffer dirty if caller will write in it */
  if (writable)
    ptr->dirty = TRUE;
  /* Return address of proper part of the buffer */
  return ptr->mem_buffer + (start_row - ptr->cur_start_row);
}


METHODDEF JBLOCKARRAY
access_big_barray (big_barray_ptr ptr, long start_row, boolean writable)
/* Access the part of a "big" coefficient-block array starting at start_row */
/* and extending for ptr->unitheight rows.  writable is true if  */
/* caller intends to modify the accessed area. */
{
  /* debugging check */
  if (start_row < 0 || start_row+ptr->unitheight > ptr->rows_in_array ||
      ptr->mem_buffer == NULL)
    ERREXIT(methods, "Bogus access_big_barray request");

  /* Make the desired part of the virtual array accessible */
  if (start_row < ptr->cur_start_row ||
      start_row+ptr->unitheight > ptr->cur_start_row+ptr->rows_in_mem) {
    if (! ptr->b_s_open)
      ERREXIT(methods, "Virtual array controller messed up");
    /* Flush old buffer contents if necessary */
    if (ptr->dirty) {
      do_barray_io(ptr, TRUE);
      ptr->dirty = FALSE;
    }
    /* Decide what part of virtual array to access.
     * Algorithm: if target address > current window, assume forward scan,
     * load starting at target address.  If target address < current window,
     * assume backward scan, load so that target address is top of window.
     * Note that when switching from forward write to forward read, will have
     * start_row = 0, so the limiting case applies and we load from 0 anyway.
     */
    if (start_row > ptr->cur_start_row) {
      ptr->cur_start_row = start_row;
    } else {
      ptr->cur_start_row = start_row + ptr->unitheight - ptr->rows_in_mem;
      if (ptr->cur_start_row < 0)
	ptr->cur_start_row = 0;	/* don't fall off front end of file */
    }
    /* If reading, read in the selected part of the array. 
     * If we are writing, we need not pre-read the selected portion,
     * since the access sequence constraints ensure it would be garbage.
     */
    if (! writable) {
      do_barray_io(ptr, FALSE);
    }
  }
  /* Flag the buffer dirty if caller will write in it */
  if (writable)
    ptr->dirty = TRUE;
  /* Return address of proper part of the buffer */
  return ptr->mem_buffer + (start_row - ptr->cur_start_row);
}


METHODDEF void
free_big_sarray (big_sarray_ptr ptr)
/* Free a "big" (virtual-memory) 2-D sample array */
{
  big_sarray_ptr * llink;

  /* Remove item from list -- linear search is fast enough */
  llink = &big_sarray_list;
  while (*llink != ptr) {
    if (*llink == NULL)
      ERREXIT(methods, "Bogus free_big_sarray request");
    llink = &( (*llink)->next );
  }
  *llink = ptr->next;

  if (ptr->b_s_open)		/* there may be no backing store */
    (*ptr->b_s_info.close_backing_store) (& ptr->b_s_info);

  if (ptr->mem_buffer != NULL)	/* just in case never realized */
    free_small_sarray(ptr->mem_buffer);

  free_small((void *) ptr);	/* free the control block too */
}


METHODDEF void
free_big_barray (big_barray_ptr ptr)
/* Free a "big" (virtual-memory) 2-D coefficient-block array */
{
  big_barray_ptr * llink;

  /* Remove item from list -- linear search is fast enough */
  llink = &big_barray_list;
  while (*llink != ptr) {
    if (*llink == NULL)
      ERREXIT(methods, "Bogus free_big_barray request");
    llink = &( (*llink)->next );
  }
  *llink = ptr->next;

  if (ptr->b_s_open)		/* there may be no backing store */
    (*ptr->b_s_info.close_backing_store) (& ptr->b_s_info);

  if (ptr->mem_buffer != NULL)	/* just in case never realized */
    free_small_barray(ptr->mem_buffer);

  free_small((void *) ptr);	/* free the control block too */
}


/*
 * Cleanup: free anything that's been allocated since jselmemmgr().
 */

METHODDEF void
free_all (void)
{
  /* First free any open "big" arrays -- these may release small arrays */
  while (big_sarray_list != NULL)
    free_big_sarray(big_sarray_list);
  while (big_barray_list != NULL)
    free_big_barray(big_barray_list);
  /* Free any open small arrays -- these may release small objects */
  /* +1's are because we must pass a pointer to the data, not the header */
  while (small_sarray_list != NULL)
    free_small_sarray((JSAMPARRAY) (small_sarray_list + 1));
  while (small_barray_list != NULL)
    free_small_barray((JBLOCKARRAY) (small_barray_list + 1));
  /* Free any remaining small objects */
  while (small_list != NULL)
    free_small((void *) (small_list + 1));
#ifdef NEED_ALLOC_MEDIUM
  while (medium_list != NULL)
    free_medium((void FAR *) (medium_list + 1));
#endif

  jmem_term();			/* system-dependent cleanup */

#ifdef MEM_STATS
  if (methods->trace_level > 0)
    print_mem_stats();		/* print optional memory usage statistics */
#endif
}


/*
 * The method selection routine for virtual memory systems.
 * The system-dependent setup routine should call this routine
 * to install the necessary method pointers in the supplied struct.
 */

GLOBAL void
jselmemmgr (external_methods_ptr emethods)
{
  methods = emethods;		/* save struct addr for error exit access */

  emethods->alloc_small = alloc_small;
  emethods->free_small = free_small;
#ifdef NEED_ALLOC_MEDIUM
  emethods->alloc_medium = alloc_medium;
  emethods->free_medium = free_medium;
#else
  emethods->alloc_medium = alloc_small;
  emethods->free_medium = free_small;
#endif
  emethods->alloc_small_sarray = alloc_small_sarray;
  emethods->free_small_sarray = free_small_sarray;
  emethods->alloc_small_barray = alloc_small_barray;
  emethods->free_small_barray = free_small_barray;
  emethods->request_big_sarray = request_big_sarray;
  emethods->request_big_barray = request_big_barray;
  emethods->alloc_big_arrays = alloc_big_arrays;
  emethods->access_big_sarray = access_big_sarray;
  emethods->access_big_barray = access_big_barray;
  emethods->free_big_sarray = free_big_sarray;
  emethods->free_big_barray = free_big_barray;
  emethods->free_all = free_all;

  /* Initialize list headers to empty */
  small_list = NULL;
#ifdef NEED_ALLOC_MEDIUM
  medium_list = NULL;
#endif
  small_sarray_list = NULL;
  small_barray_list = NULL;
  big_sarray_list = NULL;
  big_barray_list = NULL;

  jmem_init(emethods);		/* system-dependent initialization */

  /* Check for an environment variable JPEGMEM; if found, override the
   * default max_memory setting from jmem_init.  Note that a command line
   * -m argument may again override this value.
   * If your system doesn't support getenv(), define NO_GETENV to disable
   * this feature.
   */
#ifndef NO_GETENV
  { char * memenv;

    if ((memenv = getenv("JPEGMEM")) != NULL) {
      long lval;
      char ch = 'x';

      if (sscanf(memenv, "%ld%c", &lval, &ch) > 0) {
	if (ch == 'm' || ch == 'M')
	  lval *= 1000L;
	emethods->max_memory_to_use = lval * 1000L;
      }
    }
  }
#endif

}