File: jquant2.c

package info (click to toggle)
xloadimage 4.1-25
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster, sid
  • size: 4,820 kB
  • sloc: ansic: 36,084; asm: 284; makefile: 282; sh: 280
file content (1197 lines) | stat: -rw-r--r-- 44,313 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
/*
 * jquant2.c
 *
 * Copyright (C) 1991, 1992, 1993, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains 2-pass color quantization (color mapping) routines.
 * These routines are invoked via the methods color_quant_prescan,
 * color_quant_doit, and color_quant_init/term.
 */

#include "jinclude.h"

#ifdef QUANT_2PASS_SUPPORTED


/*
 * This module implements the well-known Heckbert paradigm for color
 * quantization.  Most of the ideas used here can be traced back to
 * Heckbert's seminal paper
 *   Heckbert, Paul.  "Color Image Quantization for Frame Buffer Display",
 *   Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
 *
 * In the first pass over the image, we accumulate a histogram showing the
 * usage count of each possible color.  (To keep the histogram to a reasonable
 * size, we reduce the precision of the input; typical practice is to retain
 * 5 or 6 bits per color, so that 8 or 4 different input values are counted
 * in the same histogram cell.)  Next, the color-selection step begins with a
 * box representing the whole color space, and repeatedly splits the "largest"
 * remaining box until we have as many boxes as desired colors.  Then the mean
 * color in each remaining box becomes one of the possible output colors.
 * The second pass over the image maps each input pixel to the closest output
 * color (optionally after applying a Floyd-Steinberg dithering correction).
 * This mapping is logically trivial, but making it go fast enough requires
 * considerable care.
 *
 * Heckbert-style quantizers vary a good deal in their policies for choosing
 * the "largest" box and deciding where to cut it.  The particular policies
 * used here have proved out well in experimental comparisons, but better ones
 * may yet be found.
 *
 * The most significant difference between this quantizer and others is that
 * this one is intended to operate in YCbCr colorspace, rather than RGB space
 * as is usually done.  Actually we work in scaled YCbCr colorspace, where
 * Y distances are inflated by a factor of 2 relative to Cb or Cr distances.
 * The empirical evidence is that distances in this space correspond to
 * perceptual color differences more closely than do distances in RGB space;
 * and working in this space is inexpensive within a JPEG decompressor, since
 * the input data is already in YCbCr form.  (We could transform to an even
 * more perceptually linear space such as Lab or Luv, but that is very slow
 * and doesn't yield much better results than scaled YCbCr.)
 */

#define Y_SCALE 2		/* scale Y distances up by this much */

#define MAXNUMCOLORS  (MAXJSAMPLE+1) /* maximum size of colormap */


/*
 * First we have the histogram data structure and routines for creating it.
 *
 * For work in YCbCr space, it is useful to keep more precision for Y than
 * for Cb or Cr.  We recommend keeping 6 bits for Y and 5 bits each for Cb/Cr.
 * If you have plenty of memory and cycles, 6 bits all around gives marginally
 * better results; if you are short of memory, 5 bits all around will save
 * some space but degrade the results.
 * To maintain a fully accurate histogram, we'd need to allocate a "long"
 * (preferably unsigned long) for each cell.  In practice this is overkill;
 * we can get by with 16 bits per cell.  Few of the cell counts will overflow,
 * and clamping those that do overflow to the maximum value will give close-
 * enough results.  This reduces the recommended histogram size from 256Kb
 * to 128Kb, which is a useful savings on PC-class machines.
 * (In the second pass the histogram space is re-used for pixel mapping data;
 * in that capacity, each cell must be able to store zero to the number of
 * desired colors.  16 bits/cell is plenty for that too.)
 * Since the JPEG code is intended to run in small memory model on 80x86
 * machines, we can't just allocate the histogram in one chunk.  Instead
 * of a true 3-D array, we use a row of pointers to 2-D arrays.  Each
 * pointer corresponds to a Y value (typically 2^6 = 64 pointers) and
 * each 2-D array has 2^5^2 = 1024 or 2^6^2 = 4096 entries.  Note that
 * on 80x86 machines, the pointer row is in near memory but the actual
 * arrays are in far memory (same arrangement as we use for image arrays).
 */

#ifndef HIST_Y_BITS		/* so you can override from Makefile */
#define HIST_Y_BITS  6		/* bits of precision in Y histogram */
#endif
#ifndef HIST_C_BITS		/* so you can override from Makefile */
#define HIST_C_BITS  5		/* bits of precision in Cb/Cr histogram */
#endif

#define HIST_Y_ELEMS  (1<<HIST_Y_BITS) /* # of elements along histogram axes */
#define HIST_C_ELEMS  (1<<HIST_C_BITS)

/* These are the amounts to shift an input value to get a histogram index.
 * For a combination 8/12 bit implementation, would need variables here...
 */

#define Y_SHIFT  (BITS_IN_JSAMPLE-HIST_Y_BITS)
#define C_SHIFT  (BITS_IN_JSAMPLE-HIST_C_BITS)


typedef UINT16 histcell;	/* histogram cell; MUST be an unsigned type */

typedef histcell FAR * histptr;	/* for pointers to histogram cells */

typedef histcell hist1d[HIST_C_ELEMS]; /* typedefs for the array */
typedef hist1d FAR * hist2d;	/* type for the Y-level pointers */
typedef hist2d * hist3d;	/* type for top-level pointer */

static hist3d histogram;	/* pointer to the histogram */


/*
 * Prescan some rows of pixels.
 * In this module the prescan simply updates the histogram, which has been
 * initialized to zeroes by color_quant_init.
 * Note: workspace is probably not useful for this routine, but it is passed
 * anyway to allow some code sharing within the pipeline controller.
 */

METHODDEF void
color_quant_prescan (decompress_info_ptr cinfo, int num_rows,
		     JSAMPIMAGE image_data, JSAMPARRAY workspace)
{
  register JSAMPROW ptr0, ptr1, ptr2;
  register histptr histp;
  register int c0, c1, c2;
  int row;
  long col;
  long width = cinfo->image_width;

  for (row = 0; row < num_rows; row++) {
    ptr0 = image_data[0][row];
    ptr1 = image_data[1][row];
    ptr2 = image_data[2][row];
    for (col = width; col > 0; col--) {
      /* get pixel value and index into the histogram */
      c0 = GETJSAMPLE(*ptr0++) >> Y_SHIFT;
      c1 = GETJSAMPLE(*ptr1++) >> C_SHIFT;
      c2 = GETJSAMPLE(*ptr2++) >> C_SHIFT;
      histp = & histogram[c0][c1][c2];
      /* increment, check for overflow and undo increment if so. */
      /* We assume unsigned representation here! */
      if (++(*histp) == 0)
	(*histp)--;
    }
  }
}


/*
 * Now we have the really interesting routines: selection of a colormap
 * given the completed histogram.
 * These routines work with a list of "boxes", each representing a rectangular
 * subset of the input color space (to histogram precision).
 */

typedef struct {
	/* The bounds of the box (inclusive); expressed as histogram indexes */
	int c0min, c0max;
	int c1min, c1max;
	int c2min, c2max;
	/* The number of nonzero histogram cells within this box */
	long colorcount;
      } box;
typedef box * boxptr;

static boxptr boxlist;		/* array with room for desired # of boxes */
static int numboxes;		/* number of boxes currently in boxlist */

static JSAMPARRAY my_colormap;	/* the finished colormap (in YCbCr space) */


LOCAL boxptr
find_biggest_color_pop (void)
/* Find the splittable box with the largest color population */
/* Returns NULL if no splittable boxes remain */
{
  register boxptr boxp;
  register int i;
  register long max = 0;
  boxptr which = NULL;
  
  for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
    if (boxp->colorcount > max) {
      if (boxp->c0max > boxp->c0min || boxp->c1max > boxp->c1min ||
	  boxp->c2max > boxp->c2min) {
	which = boxp;
	max = boxp->colorcount;
      }
    }
  }
  return which;
}


LOCAL boxptr
find_biggest_volume (void)
/* Find the splittable box with the largest (scaled) volume */
/* Returns NULL if no splittable boxes remain */
{
  register boxptr boxp;
  register int i;
  register INT32 max = 0;
  register INT32 norm, c0,c1,c2;
  boxptr which = NULL;
  
  /* We use 2-norm rather than real volume here.
   * Some care is needed since the differences are expressed in
   * histogram-cell units; if HIST_Y_BITS != HIST_C_BITS, we have to
   * adjust the scaling to get the proper scaled-YCbCr-space distance.
   * This code won't work right if HIST_Y_BITS < HIST_C_BITS,
   * but that shouldn't ever be true.
   * Note norm > 0 iff box is splittable, so need not check separately.
   */
  
  for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
    c0 = (boxp->c0max - boxp->c0min) * Y_SCALE;
    c1 = (boxp->c1max - boxp->c1min) << (HIST_Y_BITS-HIST_C_BITS);
    c2 = (boxp->c2max - boxp->c2min) << (HIST_Y_BITS-HIST_C_BITS);
    norm = c0*c0 + c1*c1 + c2*c2;
    if (norm > max) {
      which = boxp;
      max = norm;
    }
  }
  return which;
}


LOCAL void
update_box (boxptr boxp)
/* Shrink the min/max bounds of a box to enclose only nonzero elements, */
/* and recompute its population */
{
  histptr histp;
  int c0,c1,c2;
  int c0min,c0max,c1min,c1max,c2min,c2max;
  long ccount;
  
  c0min = boxp->c0min;  c0max = boxp->c0max;
  c1min = boxp->c1min;  c1max = boxp->c1max;
  c2min = boxp->c2min;  c2max = boxp->c2max;
  
  if (c0max > c0min)
    for (c0 = c0min; c0 <= c0max; c0++)
      for (c1 = c1min; c1 <= c1max; c1++) {
	histp = & histogram[c0][c1][c2min];
	for (c2 = c2min; c2 <= c2max; c2++)
	  if (*histp++ != 0) {
	    boxp->c0min = c0min = c0;
	    goto have_c0min;
	  }
      }
 have_c0min:
  if (c0max > c0min)
    for (c0 = c0max; c0 >= c0min; c0--)
      for (c1 = c1min; c1 <= c1max; c1++) {
	histp = & histogram[c0][c1][c2min];
	for (c2 = c2min; c2 <= c2max; c2++)
	  if (*histp++ != 0) {
	    boxp->c0max = c0max = c0;
	    goto have_c0max;
	  }
      }
 have_c0max:
  if (c1max > c1min)
    for (c1 = c1min; c1 <= c1max; c1++)
      for (c0 = c0min; c0 <= c0max; c0++) {
	histp = & histogram[c0][c1][c2min];
	for (c2 = c2min; c2 <= c2max; c2++)
	  if (*histp++ != 0) {
	    boxp->c1min = c1min = c1;
	    goto have_c1min;
	  }
      }
 have_c1min:
  if (c1max > c1min)
    for (c1 = c1max; c1 >= c1min; c1--)
      for (c0 = c0min; c0 <= c0max; c0++) {
	histp = & histogram[c0][c1][c2min];
	for (c2 = c2min; c2 <= c2max; c2++)
	  if (*histp++ != 0) {
	    boxp->c1max = c1max = c1;
	    goto have_c1max;
	  }
      }
 have_c1max:
  if (c2max > c2min)
    for (c2 = c2min; c2 <= c2max; c2++)
      for (c0 = c0min; c0 <= c0max; c0++) {
	histp = & histogram[c0][c1min][c2];
	for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C_ELEMS)
	  if (*histp != 0) {
	    boxp->c2min = c2min = c2;
	    goto have_c2min;
	  }
      }
 have_c2min:
  if (c2max > c2min)
    for (c2 = c2max; c2 >= c2min; c2--)
      for (c0 = c0min; c0 <= c0max; c0++) {
	histp = & histogram[c0][c1min][c2];
	for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C_ELEMS)
	  if (*histp != 0) {
	    boxp->c2max = c2max = c2;
	    goto have_c2max;
	  }
      }
 have_c2max:
  
  /* Now scan remaining volume of box and compute population */
  ccount = 0;
  for (c0 = c0min; c0 <= c0max; c0++)
    for (c1 = c1min; c1 <= c1max; c1++) {
      histp = & histogram[c0][c1][c2min];
      for (c2 = c2min; c2 <= c2max; c2++, histp++)
	if (*histp != 0) {
	  ccount++;
	}
    }
  boxp->colorcount = ccount;
}


LOCAL void
median_cut (int desired_colors)
/* Repeatedly select and split the largest box until we have enough boxes */
{
  int n,lb;
  int c0,c1,c2,cmax;
  register boxptr b1,b2;

  while (numboxes < desired_colors) {
    /* Select box to split */
    /* Current algorithm: by population for first half, then by volume */
    if (numboxes*2 <= desired_colors) {
      b1 = find_biggest_color_pop();
    } else {
      b1 = find_biggest_volume();
    }
    if (b1 == NULL)		/* no splittable boxes left! */
      break;
    b2 = &boxlist[numboxes];	/* where new box will go */
    /* Copy the color bounds to the new box. */
    b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;
    b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;
    /* Choose which axis to split the box on.
     * Current algorithm: longest scaled axis.
     * See notes in find_biggest_volume about scaling...
     */
    c0 = (b1->c0max - b1->c0min) * Y_SCALE;
    c1 = (b1->c1max - b1->c1min) << (HIST_Y_BITS-HIST_C_BITS);
    c2 = (b1->c2max - b1->c2min) << (HIST_Y_BITS-HIST_C_BITS);
    cmax = c0; n = 0;
    if (c1 > cmax) { cmax = c1; n = 1; }
    if (c2 > cmax) { n = 2; }
    /* Choose split point along selected axis, and update box bounds.
     * Current algorithm: split at halfway point.
     * (Since the box has been shrunk to minimum volume,
     * any split will produce two nonempty subboxes.)
     * Note that lb value is max for lower box, so must be < old max.
     */
    switch (n) {
    case 0:
      lb = (b1->c0max + b1->c0min) / 2;
      b1->c0max = lb;
      b2->c0min = lb+1;
      break;
    case 1:
      lb = (b1->c1max + b1->c1min) / 2;
      b1->c1max = lb;
      b2->c1min = lb+1;
      break;
    case 2:
      lb = (b1->c2max + b1->c2min) / 2;
      b1->c2max = lb;
      b2->c2min = lb+1;
      break;
    }
    /* Update stats for boxes */
    update_box(b1);
    update_box(b2);
    numboxes++;
  }
}


LOCAL void
compute_color (boxptr boxp, int icolor)
/* Compute representative color for a box, put it in my_colormap[icolor] */
{
  /* Current algorithm: mean weighted by pixels (not colors) */
  /* Note it is important to get the rounding correct! */
  histptr histp;
  int c0,c1,c2;
  int c0min,c0max,c1min,c1max,c2min,c2max;
  long count;
  long total = 0;
  long c0total = 0;
  long c1total = 0;
  long c2total = 0;
  
  c0min = boxp->c0min;  c0max = boxp->c0max;
  c1min = boxp->c1min;  c1max = boxp->c1max;
  c2min = boxp->c2min;  c2max = boxp->c2max;
  
  for (c0 = c0min; c0 <= c0max; c0++)
    for (c1 = c1min; c1 <= c1max; c1++) {
      histp = & histogram[c0][c1][c2min];
      for (c2 = c2min; c2 <= c2max; c2++) {
	if ((count = *histp++) != 0) {
	  total += count;
	  c0total += ((c0 << Y_SHIFT) + ((1<<Y_SHIFT)>>1)) * count;
	  c1total += ((c1 << C_SHIFT) + ((1<<C_SHIFT)>>1)) * count;
	  c2total += ((c2 << C_SHIFT) + ((1<<C_SHIFT)>>1)) * count;
	}
      }
    }
  
  my_colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total);
  my_colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total);
  my_colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total);
}


LOCAL void
remap_colormap (decompress_info_ptr cinfo)
/* Remap the internal colormap to the output colorspace */
{
  /* This requires a little trickery since color_convert expects to
   * deal with 3-D arrays (a 2-D sample array for each component).
   * We must promote the colormaps into one-row 3-D arrays.
   */
  short ci;
  JSAMPARRAY input_hack[3];
  JSAMPARRAY output_hack[10];	/* assume no more than 10 output components */

  for (ci = 0; ci < 3; ci++)
    input_hack[ci] = &(my_colormap[ci]);
  for (ci = 0; ci < cinfo->color_out_comps; ci++)
    output_hack[ci] = &(cinfo->colormap[ci]);

  (*cinfo->methods->color_convert) (cinfo, 1,
				    (long) cinfo->actual_number_of_colors,
				    input_hack, output_hack);
}


LOCAL void
select_colors (decompress_info_ptr cinfo)
/* Master routine for color selection */
{
  int desired = cinfo->desired_number_of_colors;
  int i;

  /* Allocate workspace for box list */
  boxlist = (boxptr) (*cinfo->emethods->alloc_small) (desired * SIZEOF(box));
  /* Initialize one box containing whole space */
  numboxes = 1;
  boxlist[0].c0min = 0;
  boxlist[0].c0max = MAXJSAMPLE >> Y_SHIFT;
  boxlist[0].c1min = 0;
  boxlist[0].c1max = MAXJSAMPLE >> C_SHIFT;
  boxlist[0].c2min = 0;
  boxlist[0].c2max = MAXJSAMPLE >> C_SHIFT;
  /* Shrink it to actually-used volume and set its statistics */
  update_box(& boxlist[0]);
  /* Perform median-cut to produce final box list */
  median_cut(desired);
  /* Compute the representative color for each box, fill my_colormap[] */
  for (i = 0; i < numboxes; i++)
    compute_color(& boxlist[i], i);
  cinfo->actual_number_of_colors = numboxes;
  /* Produce an output colormap in the desired output colorspace */
  remap_colormap(cinfo);
  TRACEMS1(cinfo->emethods, 1, "Selected %d colors for quantization",
	   numboxes);
  /* Done with the box list */
  (*cinfo->emethods->free_small) ((void *) boxlist);
}


/*
 * These routines are concerned with the time-critical task of mapping input
 * colors to the nearest color in the selected colormap.
 *
 * We re-use the histogram space as an "inverse color map", essentially a
 * cache for the results of nearest-color searches.  All colors within a
 * histogram cell will be mapped to the same colormap entry, namely the one
 * closest to the cell's center.  This may not be quite the closest entry to
 * the actual input color, but it's almost as good.  A zero in the cache
 * indicates we haven't found the nearest color for that cell yet; the array
 * is cleared to zeroes before starting the mapping pass.  When we find the
 * nearest color for a cell, its colormap index plus one is recorded in the
 * cache for future use.  The pass2 scanning routines call fill_inverse_cmap
 * when they need to use an unfilled entry in the cache.
 *
 * Our method of efficiently finding nearest colors is based on the "locally
 * sorted search" idea described by Heckbert and on the incremental distance
 * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
 * Gems II (James Arvo, ed.  Academic Press, 1991).  Thomas points out that
 * the distances from a given colormap entry to each cell of the histogram can
 * be computed quickly using an incremental method: the differences between
 * distances to adjacent cells themselves differ by a constant.  This allows a
 * fairly fast implementation of the "brute force" approach of computing the
 * distance from every colormap entry to every histogram cell.  Unfortunately,
 * it needs a work array to hold the best-distance-so-far for each histogram
 * cell (because the inner loop has to be over cells, not colormap entries).
 * The work array elements have to be INT32s, so the work array would need
 * 256Kb at our recommended precision.  This is not feasible in DOS machines.
 * Another disadvantage of the brute force approach is that it computes
 * distances to every cell of the cubical histogram.  When working with YCbCr
 * input, only about a quarter of the cube represents realizable colors, so
 * many of the cells will never be used and filling them is wasted effort.
 *
 * To get around these problems, we apply Thomas' method to compute the
 * nearest colors for only the cells within a small subbox of the histogram.
 * The work array need be only as big as the subbox, so the memory usage
 * problem is solved.  A subbox is processed only when some cell in it is
 * referenced by the pass2 routines, so we will never bother with cells far
 * outside the realizable color volume.  An additional advantage of this
 * approach is that we can apply Heckbert's locality criterion to quickly
 * eliminate colormap entries that are far away from the subbox; typically
 * three-fourths of the colormap entries are rejected by Heckbert's criterion,
 * and we need not compute their distances to individual cells in the subbox.
 * The speed of this approach is heavily influenced by the subbox size: too
 * small means too much overhead, too big loses because Heckbert's criterion
 * can't eliminate as many colormap entries.  Empirically the best subbox
 * size seems to be about 1/512th of the histogram (1/8th in each direction).
 *
 * Thomas' article also describes a refined method which is asymptotically
 * faster than the brute-force method, but it is also far more complex and
 * cannot efficiently be applied to small subboxes.  It is therefore not
 * useful for programs intended to be portable to DOS machines.  On machines
 * with plenty of memory, filling the whole histogram in one shot with Thomas'
 * refined method might be faster than the present code --- but then again,
 * it might not be any faster, and it's certainly more complicated.
 */


#ifndef BOX_Y_LOG		/* so you can override from Makefile */
#define BOX_Y_LOG  (HIST_Y_BITS-3) /* log2(hist cells in update box, Y axis) */
#endif
#ifndef BOX_C_LOG		/* so you can override from Makefile */
#define BOX_C_LOG  (HIST_C_BITS-3) /* log2(hist cells in update box, C axes) */
#endif

#define BOX_Y_ELEMS  (1<<BOX_Y_LOG) /* # of hist cells in update box */
#define BOX_C_ELEMS  (1<<BOX_C_LOG)

#define BOX_Y_SHIFT  (Y_SHIFT + BOX_Y_LOG)
#define BOX_C_SHIFT  (C_SHIFT + BOX_C_LOG)


/*
 * The next three routines implement inverse colormap filling.  They could
 * all be folded into one big routine, but splitting them up this way saves
 * some stack space (the mindist[] and bestdist[] arrays need not coexist)
 * and may allow some compilers to produce better code by registerizing more
 * inner-loop variables.
 */

LOCAL int
find_nearby_colors (decompress_info_ptr cinfo, int minc0, int minc1, int minc2,
		    JSAMPLE colorlist[])
/* Locate the colormap entries close enough to an update box to be candidates
 * for the nearest entry to some cell(s) in the update box.  The update box
 * is specified by the center coordinates of its first cell.  The number of
 * candidate colormap entries is returned, and their colormap indexes are
 * placed in colorlist[].
 * This routine uses Heckbert's "locally sorted search" criterion to select
 * the colors that need further consideration.
 */
{
  int numcolors = cinfo->actual_number_of_colors;
  int maxc0, maxc1, maxc2;
  int centerc0, centerc1, centerc2;
  int i, x, ncolors;
  INT32 minmaxdist, min_dist, max_dist, tdist;
  INT32 mindist[MAXNUMCOLORS];	/* min distance to colormap entry i */

  /* Compute true coordinates of update box's upper corner and center.
   * Actually we compute the coordinates of the center of the upper-corner
   * histogram cell, which are the upper bounds of the volume we care about.
   * Note that since ">>" rounds down, the "center" values may be closer to
   * min than to max; hence comparisons to them must be "<=", not "<".
   */
  maxc0 = minc0 + ((1 << BOX_Y_SHIFT) - (1 << Y_SHIFT));
  centerc0 = (minc0 + maxc0) >> 1;
  maxc1 = minc1 + ((1 << BOX_C_SHIFT) - (1 << C_SHIFT));
  centerc1 = (minc1 + maxc1) >> 1;
  maxc2 = minc2 + ((1 << BOX_C_SHIFT) - (1 << C_SHIFT));
  centerc2 = (minc2 + maxc2) >> 1;

  /* For each color in colormap, find:
   *  1. its minimum squared-distance to any point in the update box
   *     (zero if color is within update box);
   *  2. its maximum squared-distance to any point in the update box.
   * Both of these can be found by considering only the corners of the box.
   * We save the minimum distance for each color in mindist[];
   * only the smallest maximum distance is of interest.
   * Note we have to scale Y to get correct distance in scaled space.
   */
  minmaxdist = 0x7FFFFFFFL;

  for (i = 0; i < numcolors; i++) {
    /* We compute the squared-c0-distance term, then add in the other two. */
    x = GETJSAMPLE(my_colormap[0][i]);
    if (x < minc0) {
      tdist = (x - minc0) * Y_SCALE;
      min_dist = tdist*tdist;
      tdist = (x - maxc0) * Y_SCALE;
      max_dist = tdist*tdist;
    } else if (x > maxc0) {
      tdist = (x - maxc0) * Y_SCALE;
      min_dist = tdist*tdist;
      tdist = (x - minc0) * Y_SCALE;
      max_dist = tdist*tdist;
    } else {
      /* within cell range so no contribution to min_dist */
      min_dist = 0;
      if (x <= centerc0) {
	tdist = (x - maxc0) * Y_SCALE;
	max_dist = tdist*tdist;
      } else {
	tdist = (x - minc0) * Y_SCALE;
	max_dist = tdist*tdist;
      }
    }

    x = GETJSAMPLE(my_colormap[1][i]);
    if (x < minc1) {
      tdist = x - minc1;
      min_dist += tdist*tdist;
      tdist = x - maxc1;
      max_dist += tdist*tdist;
    } else if (x > maxc1) {
      tdist = x - maxc1;
      min_dist += tdist*tdist;
      tdist = x - minc1;
      max_dist += tdist*tdist;
    } else {
      /* within cell range so no contribution to min_dist */
      if (x <= centerc1) {
	tdist = x - maxc1;
	max_dist += tdist*tdist;
      } else {
	tdist = x - minc1;
	max_dist += tdist*tdist;
      }
    }

    x = GETJSAMPLE(my_colormap[2][i]);
    if (x < minc2) {
      tdist = x - minc2;
      min_dist += tdist*tdist;
      tdist = x - maxc2;
      max_dist += tdist*tdist;
    } else if (x > maxc2) {
      tdist = x - maxc2;
      min_dist += tdist*tdist;
      tdist = x - minc2;
      max_dist += tdist*tdist;
    } else {
      /* within cell range so no contribution to min_dist */
      if (x <= centerc2) {
	tdist = x - maxc2;
	max_dist += tdist*tdist;
      } else {
	tdist = x - minc2;
	max_dist += tdist*tdist;
      }
    }

    mindist[i] = min_dist;	/* save away the results */
    if (max_dist < minmaxdist)
      minmaxdist = max_dist;
  }

  /* Now we know that no cell in the update box is more than minmaxdist
   * away from some colormap entry.  Therefore, only colors that are
   * within minmaxdist of some part of the box need be considered.
   */
  ncolors = 0;
  for (i = 0; i < numcolors; i++) {
    if (mindist[i] <= minmaxdist)
      colorlist[ncolors++] = (JSAMPLE) i;
  }
  return ncolors;
}


LOCAL void
find_best_colors (decompress_info_ptr cinfo, int minc0, int minc1, int minc2,
		  int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
/* Find the closest colormap entry for each cell in the update box,
 * given the list of candidate colors prepared by find_nearby_colors.
 * Return the indexes of the closest entries in the bestcolor[] array.
 * This routine uses Thomas' incremental distance calculation method to
 * find the distance from a colormap entry to successive cells in the box.
 */
{
  int ic0, ic1, ic2;
  int i, icolor;
  register INT32 * bptr;	/* pointer into bestdist[] array */
  JSAMPLE * cptr;		/* pointer into bestcolor[] array */
  INT32 dist0, dist1;		/* initial distance values */
  register INT32 dist2;		/* current distance in inner loop */
  INT32 xx0, xx1;		/* distance increments */
  register INT32 xx2;
  INT32 inc0, inc1, inc2;	/* initial values for increments */
  /* This array holds the distance to the nearest-so-far color for each cell */
  INT32 bestdist[BOX_Y_ELEMS * BOX_C_ELEMS * BOX_C_ELEMS];

  /* Initialize best-distance for each cell of the update box */
  bptr = bestdist;
  for (i = BOX_Y_ELEMS*BOX_C_ELEMS*BOX_C_ELEMS-1; i >= 0; i--)
    *bptr++ = 0x7FFFFFFFL;
  
  /* For each color selected by find_nearby_colors,
   * compute its distance to the center of each cell in the box.
   * If that's less than best-so-far, update best distance and color number.
   * Note we have to scale Y to get correct distance in scaled space.
   */
  
  /* Nominal steps between cell centers ("x" in Thomas article) */
#define STEP_Y  ((1 << Y_SHIFT) * Y_SCALE)
#define STEP_C  (1 << C_SHIFT)
  
  for (i = 0; i < numcolors; i++) {
    icolor = GETJSAMPLE(colorlist[i]);
    /* Compute (square of) distance from minc0/c1/c2 to this color */
    inc0 = (minc0 - (int) GETJSAMPLE(my_colormap[0][icolor])) * Y_SCALE;
    dist0 = inc0*inc0;
    inc1 = minc1 - (int) GETJSAMPLE(my_colormap[1][icolor]);
    dist0 += inc1*inc1;
    inc2 = minc2 - (int) GETJSAMPLE(my_colormap[2][icolor]);
    dist0 += inc2*inc2;
    /* Form the initial difference increments */
    inc0 = inc0 * (2 * STEP_Y) + STEP_Y * STEP_Y;
    inc1 = inc1 * (2 * STEP_C) + STEP_C * STEP_C;
    inc2 = inc2 * (2 * STEP_C) + STEP_C * STEP_C;
    /* Now loop over all cells in box, updating distance per Thomas method */
    bptr = bestdist;
    cptr = bestcolor;
    xx0 = inc0;
    for (ic0 = BOX_Y_ELEMS-1; ic0 >= 0; ic0--) {
      dist1 = dist0;
      xx1 = inc1;
      for (ic1 = BOX_C_ELEMS-1; ic1 >= 0; ic1--) {
	dist2 = dist1;
	xx2 = inc2;
	for (ic2 = BOX_C_ELEMS-1; ic2 >= 0; ic2--) {
	  if (dist2 < *bptr) {
	    *bptr = dist2;
	    *cptr = (JSAMPLE) icolor;
	  }
	  dist2 += xx2;
	  xx2 += 2 * STEP_C * STEP_C;
	  bptr++;
	  cptr++;
	}
	dist1 += xx1;
	xx1 += 2 * STEP_C * STEP_C;
      }
      dist0 += xx0;
      xx0 += 2 * STEP_Y * STEP_Y;
    }
  }
}


LOCAL void
fill_inverse_cmap (decompress_info_ptr cinfo, int c0, int c1, int c2)
/* Fill the inverse-colormap entries in the update box that contains */
/* histogram cell c0/c1/c2.  (Only that one cell MUST be filled, but */
/* we can fill as many others as we wish.) */
{
  int minc0, minc1, minc2;	/* lower left corner of update box */
  int ic0, ic1, ic2;
  register JSAMPLE * cptr;	/* pointer into bestcolor[] array */
  register histptr cachep;	/* pointer into main cache array */
  /* This array lists the candidate colormap indexes. */
  JSAMPLE colorlist[MAXNUMCOLORS];
  int numcolors;		/* number of candidate colors */
  /* This array holds the actually closest colormap index for each cell. */
  JSAMPLE bestcolor[BOX_Y_ELEMS * BOX_C_ELEMS * BOX_C_ELEMS];

  /* Convert cell coordinates to update box ID */
  c0 >>= BOX_Y_LOG;
  c1 >>= BOX_C_LOG;
  c2 >>= BOX_C_LOG;

  /* Compute true coordinates of update box's origin corner.
   * Actually we compute the coordinates of the center of the corner
   * histogram cell, which are the lower bounds of the volume we care about.
   */
  minc0 = (c0 << BOX_Y_SHIFT) + ((1 << Y_SHIFT) >> 1);
  minc1 = (c1 << BOX_C_SHIFT) + ((1 << C_SHIFT) >> 1);
  minc2 = (c2 << BOX_C_SHIFT) + ((1 << C_SHIFT) >> 1);
  
  /* Determine which colormap entries are close enough to be candidates
   * for the nearest entry to some cell in the update box.
   */
  numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);

  /* Determine the actually nearest colors. */
  find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
		   bestcolor);

  /* Save the best color numbers (plus 1) in the main cache array */
  c0 <<= BOX_Y_LOG;		/* convert ID back to base cell indexes */
  c1 <<= BOX_C_LOG;
  c2 <<= BOX_C_LOG;
  cptr = bestcolor;
  for (ic0 = 0; ic0 < BOX_Y_ELEMS; ic0++) {
    for (ic1 = 0; ic1 < BOX_C_ELEMS; ic1++) {
      cachep = & histogram[c0+ic0][c1+ic1][c2];
      for (ic2 = 0; ic2 < BOX_C_ELEMS; ic2++) {
	*cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1);
      }
    }
  }
}


/*
 * These routines perform second-pass scanning of the image: map each pixel to
 * the proper colormap index, and output the indexes to the output file.
 *
 * output_workspace is a one-component array of pixel dimensions at least
 * as large as the input image strip; it can be used to hold the converted
 * pixels' colormap indexes.
 */

METHODDEF void
pass2_nodither (decompress_info_ptr cinfo, int num_rows,
		JSAMPIMAGE image_data, JSAMPARRAY output_workspace)
/* This version performs no dithering */
{
  register JSAMPROW ptr0, ptr1, ptr2, outptr;
  register histptr cachep;
  register int c0, c1, c2;
  int row;
  long col;
  long width = cinfo->image_width;

  /* Convert data to colormap indexes, which we save in output_workspace */
  for (row = 0; row < num_rows; row++) {
    ptr0 = image_data[0][row];
    ptr1 = image_data[1][row];
    ptr2 = image_data[2][row];
    outptr = output_workspace[row];
    for (col = width; col > 0; col--) {
      /* get pixel value and index into the cache */
      c0 = GETJSAMPLE(*ptr0++) >> Y_SHIFT;
      c1 = GETJSAMPLE(*ptr1++) >> C_SHIFT;
      c2 = GETJSAMPLE(*ptr2++) >> C_SHIFT;
      cachep = & histogram[c0][c1][c2];
      /* If we have not seen this color before, find nearest colormap entry */
      /* and update the cache */
      if (*cachep == 0)
	fill_inverse_cmap(cinfo, c0,c1,c2);
      /* Now emit the colormap index for this cell */
      *outptr++ = (JSAMPLE) (*cachep - 1);
    }
  }
  /* Emit converted rows to the output file */
  (*cinfo->methods->put_pixel_rows) (cinfo, num_rows, &output_workspace);
}


/* Declarations for Floyd-Steinberg dithering.
 *
 * Errors are accumulated into the array fserrors[], at a resolution of
 * 1/16th of a pixel count.  The error at a given pixel is propagated
 * to its not-yet-processed neighbors using the standard F-S fractions,
 *		...	(here)	7/16
 *		3/16	5/16	1/16
 * We work left-to-right on even rows, right-to-left on odd rows.
 *
 * We can get away with a single array (holding one row's worth of errors)
 * by using it to store the current row's errors at pixel columns not yet
 * processed, but the next row's errors at columns already processed.  We
 * need only a few extra variables to hold the errors immediately around the
 * current column.  (If we are lucky, those variables are in registers, but
 * even if not, they're probably cheaper to access than array elements are.)
 *
 * The fserrors[] array has (#columns + 2) entries; the extra entry at
 * each end saves us from special-casing the first and last pixels.
 * Each entry is three values long, one value for each color component.
 *
 * Note: on a wide image, we might not have enough room in a PC's near data
 * segment to hold the error array; so it is allocated with alloc_medium.
 */

#ifdef EIGHT_BIT_SAMPLES
typedef INT16 FSERROR;		/* 16 bits should be enough */
typedef int LOCFSERROR;		/* use 'int' for calculation temps */
#else
typedef INT32 FSERROR;		/* may need more than 16 bits */
typedef INT32 LOCFSERROR;	/* be sure calculation temps are big enough */
#endif

typedef FSERROR FAR *FSERRPTR;	/* pointer to error array (in FAR storage!) */

static FSERRPTR fserrors;	/* accumulated errors */
static boolean on_odd_row;	/* flag to remember which row we are on */


METHODDEF void
pass2_dither (decompress_info_ptr cinfo, int num_rows,
	      JSAMPIMAGE image_data, JSAMPARRAY output_workspace)
/* This version performs Floyd-Steinberg dithering */
{
  register LOCFSERROR cur0, cur1, cur2;	/* current error or pixel value */
  LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
  LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
  register FSERRPTR errorptr;	/* => fserrors[] at column before current */
  JSAMPROW ptr0, ptr1, ptr2;	/* => current input pixel */
  JSAMPROW outptr;		/* => current output pixel */
  histptr cachep;
  int dir;			/* +1 or -1 depending on direction */
  int dir3;			/* 3*dir, for advancing errorptr */
  int row;
  long col;
  long width = cinfo->image_width;
  JSAMPLE *range_limit = cinfo->sample_range_limit;
  JSAMPROW colormap0 = my_colormap[0];
  JSAMPROW colormap1 = my_colormap[1];
  JSAMPROW colormap2 = my_colormap[2];
  SHIFT_TEMPS

  /* Convert data to colormap indexes, which we save in output_workspace */
  for (row = 0; row < num_rows; row++) {
    ptr0 = image_data[0][row];
    ptr1 = image_data[1][row];
    ptr2 = image_data[2][row];
    outptr = output_workspace[row];
    if (on_odd_row) {
      /* work right to left in this row */
      ptr0 += width - 1;	/* so point to rightmost pixel */
      ptr1 += width - 1;
      ptr2 += width - 1;
      outptr += width - 1;
      dir = -1;
      dir3 = -3;
      errorptr = fserrors + (width+1)*3; /* point to entry after last column */
      on_odd_row = FALSE;	/* flip for next time */
    } else {
      /* work left to right in this row */
      dir = 1;
      dir3 = 3;
      errorptr = fserrors;	/* point to entry before first real column */
      on_odd_row = TRUE;	/* flip for next time */
    }
    /* Preset error values: no error propagated to first pixel from left */
    cur0 = cur1 = cur2 = 0;
    /* and no error propagated to row below yet */
    belowerr0 = belowerr1 = belowerr2 = 0;
    bpreverr0 = bpreverr1 = bpreverr2 = 0;

    for (col = width; col > 0; col--) {
      /* curN holds the error propagated from the previous pixel on the
       * current line.  Add the error propagated from the previous line
       * to form the complete error correction term for this pixel, and
       * round the error term (which is expressed * 16) to an integer.
       * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
       * for either sign of the error value.
       * Note: errorptr points to *previous* column's array entry.
       */
      cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4);
      cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4);
      cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4);
      /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
       * The maximum error is +- MAXJSAMPLE; this sets the required size
       * of the range_limit array.
       */
      cur0 += GETJSAMPLE(*ptr0);
      cur1 += GETJSAMPLE(*ptr1);
      cur2 += GETJSAMPLE(*ptr2);
      cur0 = GETJSAMPLE(range_limit[cur0]);
      cur1 = GETJSAMPLE(range_limit[cur1]);
      cur2 = GETJSAMPLE(range_limit[cur2]);
      /* Index into the cache with adjusted pixel value */
      cachep = & histogram[cur0 >> Y_SHIFT][cur1 >> C_SHIFT][cur2 >> C_SHIFT];
      /* If we have not seen this color before, find nearest colormap */
      /* entry and update the cache */
      if (*cachep == 0)
	fill_inverse_cmap(cinfo, cur0>>Y_SHIFT, cur1>>C_SHIFT, cur2>>C_SHIFT);
      /* Now emit the colormap index for this cell */
      { register int pixcode = *cachep - 1;
	*outptr = (JSAMPLE) pixcode;
	/* Compute representation error for this pixel */
	cur0 -= GETJSAMPLE(colormap0[pixcode]);
	cur1 -= GETJSAMPLE(colormap1[pixcode]);
	cur2 -= GETJSAMPLE(colormap2[pixcode]);
      }
      /* Compute error fractions to be propagated to adjacent pixels.
       * Add these into the running sums, and simultaneously shift the
       * next-line error sums left by 1 column.
       */
      { register LOCFSERROR bnexterr, delta;

	bnexterr = cur0;	/* Process component 0 */
	delta = cur0 * 2;
	cur0 += delta;		/* form error * 3 */
	errorptr[0] = (FSERROR) (bpreverr0 + cur0);
	cur0 += delta;		/* form error * 5 */
	bpreverr0 = belowerr0 + cur0;
	belowerr0 = bnexterr;
	cur0 += delta;		/* form error * 7 */
	bnexterr = cur1;	/* Process component 1 */
	delta = cur1 * 2;
	cur1 += delta;		/* form error * 3 */
	errorptr[1] = (FSERROR) (bpreverr1 + cur1);
	cur1 += delta;		/* form error * 5 */
	bpreverr1 = belowerr1 + cur1;
	belowerr1 = bnexterr;
	cur1 += delta;		/* form error * 7 */
	bnexterr = cur2;	/* Process component 2 */
	delta = cur2 * 2;
	cur2 += delta;		/* form error * 3 */
	errorptr[2] = (FSERROR) (bpreverr2 + cur2);
	cur2 += delta;		/* form error * 5 */
	bpreverr2 = belowerr2 + cur2;
	belowerr2 = bnexterr;
	cur2 += delta;		/* form error * 7 */
      }
      /* At this point curN contains the 7/16 error value to be propagated
       * to the next pixel on the current line, and all the errors for the
       * next line have been shifted over.  We are therefore ready to move on.
       */
      ptr0 += dir;		/* Advance pixel pointers to next column */
      ptr1 += dir;
      ptr2 += dir;
      outptr += dir;
      errorptr += dir3;		/* advance errorptr to current column */
    }
    /* Post-loop cleanup: we must unload the final error values into the
     * final fserrors[] entry.  Note we need not unload belowerrN because
     * it is for the dummy column before or after the actual array.
     */
    errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */
    errorptr[1] = (FSERROR) bpreverr1;
    errorptr[2] = (FSERROR) bpreverr2;
  }
  /* Emit converted rows to the output file */
  (*cinfo->methods->put_pixel_rows) (cinfo, num_rows, &output_workspace);
}


/*
 * Initialize for two-pass color quantization.
 */

METHODDEF void
color_quant_init (decompress_info_ptr cinfo)
{
  int i;

  /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
  if (cinfo->desired_number_of_colors < 8)
    ERREXIT(cinfo->emethods, "Cannot request less than 8 quantized colors");
  /* Make sure colormap indexes can be represented by JSAMPLEs */
  if (cinfo->desired_number_of_colors > MAXNUMCOLORS)
    ERREXIT1(cinfo->emethods, "Cannot request more than %d quantized colors",
	     MAXNUMCOLORS);

  /* Allocate and zero the histogram */
  histogram = (hist3d) (*cinfo->emethods->alloc_small)
				(HIST_Y_ELEMS * SIZEOF(hist2d));
  for (i = 0; i < HIST_Y_ELEMS; i++) {
    histogram[i] = (hist2d) (*cinfo->emethods->alloc_medium)
				(HIST_C_ELEMS*HIST_C_ELEMS * SIZEOF(histcell));
    jzero_far((void FAR *) histogram[i],
	      HIST_C_ELEMS*HIST_C_ELEMS * SIZEOF(histcell));
  }

  /* Allocate storage for the internal and external colormaps. */
  /* We do this now since it is FAR storage and may affect the memory */
  /* manager's space calculations. */
  my_colormap = (*cinfo->emethods->alloc_small_sarray)
			((long) cinfo->desired_number_of_colors,
			 (long) 3);
  cinfo->colormap = (*cinfo->emethods->alloc_small_sarray)
			((long) cinfo->desired_number_of_colors,
			 (long) cinfo->color_out_comps);

  /* Allocate Floyd-Steinberg workspace if necessary */
  /* This isn't needed until pass 2, but again it is FAR storage. */
  if (cinfo->use_dithering) {
    size_t arraysize = (size_t) ((cinfo->image_width + 2L) *
				 (3 * SIZEOF(FSERROR)));

    fserrors = (FSERRPTR) (*cinfo->emethods->alloc_medium) (arraysize);
    /* Initialize the propagated errors to zero. */
    jzero_far((void FAR *) fserrors, arraysize);
    on_odd_row = FALSE;
  }

  /* Indicate number of passes needed, excluding the prescan pass. */
  cinfo->total_passes++;	/* I always use one pass */
}


/*
 * Perform two-pass quantization: rescan the image data and output the
 * converted data via put_color_map and put_pixel_rows.
 * The source_method is a routine that can scan the image data; it can
 * be called as many times as desired.  The processing routine called by
 * source_method has the same interface as color_quantize does in the
 * one-pass case, except it must call put_pixel_rows itself.  (This allows
 * me to use multiple passes in which earlier passes don't output anything.)
 */

METHODDEF void
color_quant_doit (decompress_info_ptr cinfo, quantize_caller_ptr source_method)
{
  int i;

  /* Select the representative colors */
  select_colors(cinfo);
  /* Pass the external colormap to the output module. */
  /* NB: the output module may continue to use the colormap until shutdown. */
  (*cinfo->methods->put_color_map) (cinfo, cinfo->actual_number_of_colors,
				    cinfo->colormap);
  /* Re-zero the histogram so pass 2 can use it as nearest-color cache */
  for (i = 0; i < HIST_Y_ELEMS; i++) {
    jzero_far((void FAR *) histogram[i],
	      HIST_C_ELEMS*HIST_C_ELEMS * SIZEOF(histcell));
  }
  /* Perform pass 2 */
  if (cinfo->use_dithering)
    (*source_method) (cinfo, pass2_dither);
  else
    (*source_method) (cinfo, pass2_nodither);
}


/*
 * Finish up at the end of the file.
 */

METHODDEF void
color_quant_term (decompress_info_ptr cinfo)
{
  /* no work (we let free_all release the histogram/cache and colormaps) */
  /* Note that we *mustn't* free the external colormap before free_all, */
  /* since output module may use it! */
}


/*
 * Map some rows of pixels to the output colormapped representation.
 * Not used in two-pass case.
 */

METHODDEF void
color_quantize (decompress_info_ptr cinfo, int num_rows,
		JSAMPIMAGE input_data, JSAMPARRAY output_data)
{
  ERREXIT(cinfo->emethods, "Should not get here!");
}


/*
 * The method selection routine for 2-pass color quantization.
 */

GLOBAL void
jsel2quantize (decompress_info_ptr cinfo)
{
  if (cinfo->two_pass_quantize) {
    /* Make sure jdmaster didn't give me a case I can't handle */
    if (cinfo->num_components != 3 || cinfo->jpeg_color_space != CS_YCbCr)
      ERREXIT(cinfo->emethods, "2-pass quantization only handles YCbCr input");
    cinfo->methods->color_quant_init = color_quant_init;
    cinfo->methods->color_quant_prescan = color_quant_prescan;
    cinfo->methods->color_quant_doit = color_quant_doit;
    cinfo->methods->color_quant_term = color_quant_term;
    cinfo->methods->color_quantize = color_quantize;
    /* Quantized grayscale output is normally done by jquant1.c (which will do
     * a much better job of it).  But if the program is configured with only
     * 2-pass quantization, then I have to do the job.  In this situation,
     * jseldcolor's clearing of the Cb/Cr component_needed flags is incorrect,
     * because I will look at those components before conversion.
     */
    cinfo->cur_comp_info[1]->component_needed = TRUE;
    cinfo->cur_comp_info[2]->component_needed = TRUE;
  }
}

#endif /* QUANT_2PASS_SUPPORTED */