File: jcpipe.c

package info (click to toggle)
xloadimage 4.1-3
  • links: PTS
  • area: main
  • in suites: hamm, slink
  • size: 2,580 kB
  • ctags: 3,902
  • sloc: ansic: 35,724; makefile: 410; asm: 284; sh: 107
file content (736 lines) | stat: -rw-r--r-- 26,905 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
/*
 * jcpipe.c
 *
 * Copyright (C) 1991, 1992, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains compression pipeline controllers.
 * These routines are invoked via the c_pipeline_controller method.
 *
 * There are four basic pipeline controllers, one for each combination of:
 *	single-scan JPEG file (single component or fully interleaved)
 *  vs. multiple-scan JPEG file (noninterleaved or partially interleaved).
 *
 *	optimization of entropy encoding parameters
 *  vs. usage of default encoding parameters.
 *
 * Note that these conditions determine the needs for "big" arrays:
 * multiple scans imply a big array for splitting the color components;
 * entropy encoding optimization needs a big array for the MCU data.
 *
 * All but the simplest controller (single-scan, no optimization) can be
 * compiled out through configuration options, if you need to make a minimal
 * implementation.
 */

#include "jinclude.h"


/*
 * About the data structures:
 *
 * The processing chunk size for downsampling is referred to in this file as
 * a "row group": a row group is defined as Vk (v_samp_factor) sample rows of
 * any component after downsampling, or Vmax (max_v_samp_factor) unsubsampled
 * rows.  In an interleaved scan each MCU row contains exactly DCTSIZE row
 * groups of each component in the scan.  In a noninterleaved scan an MCU row
 * is one row of blocks, which might not be an integral number of row groups;
 * for convenience we use a buffer of the same size as in interleaved scans,
 * and process Vk MCU rows in each burst of downsampling.
 * To provide context for the downsampling step, we have to retain the last
 * two row groups of the previous MCU row while reading in the next MCU row
 * (or set of Vk MCU rows).  To do this without copying data about, we create
 * a rather strange data structure.  Exactly DCTSIZE+2 row groups of samples
 * are allocated, but we create two different sets of pointers to this array.
 * The second set swaps the last two pairs of row groups.  By working
 * alternately with the two sets of pointers, we can access the data in the
 * desired order.
 */



/*
 * Utility routines: common code for pipeline controllers
 */

LOCAL void
interleaved_scan_setup (compress_info_ptr cinfo)
/* Compute all derived info for an interleaved (multi-component) scan */
/* On entry, cinfo->comps_in_scan and cinfo->cur_comp_info[] are set up */
{
  short ci, mcublks;
  jpeg_component_info *compptr;

  if (cinfo->comps_in_scan > MAX_COMPS_IN_SCAN)
    ERREXIT(cinfo->emethods, "Too many components for interleaved scan");

  cinfo->MCUs_per_row = (cinfo->image_width
			 + cinfo->max_h_samp_factor*DCTSIZE - 1)
			/ (cinfo->max_h_samp_factor*DCTSIZE);

  cinfo->MCU_rows_in_scan = (cinfo->image_height
			     + cinfo->max_v_samp_factor*DCTSIZE - 1)
			    / (cinfo->max_v_samp_factor*DCTSIZE);
  
  cinfo->blocks_in_MCU = 0;

  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    compptr = cinfo->cur_comp_info[ci];
    /* for interleaved scan, sampling factors give # of blocks per component */
    compptr->MCU_width = compptr->h_samp_factor;
    compptr->MCU_height = compptr->v_samp_factor;
    compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height;
    /* compute physical dimensions of component */
    compptr->downsampled_width = jround_up(compptr->true_comp_width,
					   (long) (compptr->MCU_width*DCTSIZE));
    compptr->downsampled_height = jround_up(compptr->true_comp_height,
					    (long) (compptr->MCU_height*DCTSIZE));
    /* Sanity check */
    if (compptr->downsampled_width !=
	(cinfo->MCUs_per_row * (compptr->MCU_width*DCTSIZE)))
      ERREXIT(cinfo->emethods, "I'm confused about the image width");
    /* Prepare array describing MCU composition */
    mcublks = compptr->MCU_blocks;
    if (cinfo->blocks_in_MCU + mcublks > MAX_BLOCKS_IN_MCU)
      ERREXIT(cinfo->emethods, "Sampling factors too large for interleaved scan");
    while (mcublks-- > 0) {
      cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci;
    }
  }

  /* Convert restart specified in rows to actual MCU count. */
  /* Note that count must fit in 16 bits, so we provide limiting. */
  if (cinfo->restart_in_rows > 0) {
    long nominal = cinfo->restart_in_rows * cinfo->MCUs_per_row;
    cinfo->restart_interval = (UINT16) MIN(nominal, 65535L);
  }

  (*cinfo->methods->c_per_scan_method_selection) (cinfo);
}


LOCAL void
noninterleaved_scan_setup (compress_info_ptr cinfo)
/* Compute all derived info for a noninterleaved (single-component) scan */
/* On entry, cinfo->comps_in_scan = 1 and cinfo->cur_comp_info[0] is set up */
{
  jpeg_component_info *compptr = cinfo->cur_comp_info[0];

  /* for noninterleaved scan, always one block per MCU */
  compptr->MCU_width = 1;
  compptr->MCU_height = 1;
  compptr->MCU_blocks = 1;
  /* compute physical dimensions of component */
  compptr->downsampled_width = jround_up(compptr->true_comp_width,
					 (long) DCTSIZE);
  compptr->downsampled_height = jround_up(compptr->true_comp_height,
					  (long) DCTSIZE);

  cinfo->MCUs_per_row = compptr->downsampled_width / DCTSIZE;
  cinfo->MCU_rows_in_scan = compptr->downsampled_height / DCTSIZE;

  /* Prepare array describing MCU composition */
  cinfo->blocks_in_MCU = 1;
  cinfo->MCU_membership[0] = 0;

  /* Convert restart specified in rows to actual MCU count. */
  /* Note that count must fit in 16 bits, so we provide limiting. */
  if (cinfo->restart_in_rows > 0) {
    long nominal = cinfo->restart_in_rows * cinfo->MCUs_per_row;
    cinfo->restart_interval = (UINT16) MIN(nominal, 65535L);
  }

  (*cinfo->methods->c_per_scan_method_selection) (cinfo);
}



LOCAL void
alloc_sampling_buffer (compress_info_ptr cinfo, JSAMPIMAGE fullsize_data[2],
		       long fullsize_width)
/* Create a pre-downsampling data buffer having the desired structure */
/* (see comments at head of file) */
{
  short ci, vs, i;

  vs = cinfo->max_v_samp_factor; /* row group height */

  /* Get top-level space for array pointers */
  fullsize_data[0] = (JSAMPIMAGE) (*cinfo->emethods->alloc_small)
				(cinfo->num_components * SIZEOF(JSAMPARRAY));
  fullsize_data[1] = (JSAMPIMAGE) (*cinfo->emethods->alloc_small)
				(cinfo->num_components * SIZEOF(JSAMPARRAY));

  for (ci = 0; ci < cinfo->num_components; ci++) {
    /* Allocate the real storage */
    fullsize_data[0][ci] = (*cinfo->emethods->alloc_small_sarray)
				(fullsize_width,
				(long) (vs * (DCTSIZE+2)));
    /* Create space for the scrambled-order pointers */
    fullsize_data[1][ci] = (JSAMPARRAY) (*cinfo->emethods->alloc_small)
				(vs * (DCTSIZE+2) * SIZEOF(JSAMPROW));
    /* Duplicate the first DCTSIZE-2 row groups */
    for (i = 0; i < vs * (DCTSIZE-2); i++) {
      fullsize_data[1][ci][i] = fullsize_data[0][ci][i];
    }
    /* Copy the last four row groups in swapped order */
    for (i = 0; i < vs * 2; i++) {
      fullsize_data[1][ci][vs*DCTSIZE + i] = fullsize_data[0][ci][vs*(DCTSIZE-2) + i];
      fullsize_data[1][ci][vs*(DCTSIZE-2) + i] = fullsize_data[0][ci][vs*DCTSIZE + i];
    }
  }
}


#if 0				/* this routine not currently needed */

LOCAL void
free_sampling_buffer (compress_info_ptr cinfo, JSAMPIMAGE fullsize_data[2])
/* Release a sampling buffer created by alloc_sampling_buffer */
{
  short ci;

  for (ci = 0; ci < cinfo->num_components; ci++) {
    /* Free the real storage */
    (*cinfo->emethods->free_small_sarray) (fullsize_data[0][ci]);
    /* Free the scrambled-order pointers */
    (*cinfo->emethods->free_small) ((void *) fullsize_data[1][ci]);
  }

  /* Free the top-level space */
  (*cinfo->emethods->free_small) ((void *) fullsize_data[0]);
  (*cinfo->emethods->free_small) ((void *) fullsize_data[1]);
}

#endif


LOCAL void
downsample (compress_info_ptr cinfo,
	    JSAMPIMAGE fullsize_data, JSAMPIMAGE sampled_data,
	    long fullsize_width,
	    short above, short current, short below, short out)
/* Do downsampling of a single row group (of each component). */
/* above, current, below are indexes of row groups in fullsize_data;      */
/* out is the index of the target row group in sampled_data.              */
/* Special case: above, below can be -1 to indicate top, bottom of image. */
{
  jpeg_component_info *compptr;
  JSAMPARRAY above_ptr, below_ptr;
  JSAMPROW dummy[MAX_SAMP_FACTOR]; /* for downsample expansion at top/bottom */
  short ci, vs, i;

  vs = cinfo->max_v_samp_factor; /* row group height */

  for (ci = 0; ci < cinfo->num_components; ci++) {
    compptr = & cinfo->comp_info[ci];

    if (above >= 0)
      above_ptr = fullsize_data[ci] + above * vs;
    else {
      /* Top of image: make a dummy above-context with copies of 1st row */
      /* We assume current=0 in this case */
      for (i = 0; i < vs; i++)
	dummy[i] = fullsize_data[ci][0];
      above_ptr = (JSAMPARRAY) dummy; /* possible near->far pointer conv */
    }

    if (below >= 0)
      below_ptr = fullsize_data[ci] + below * vs;
    else {
      /* Bot of image: make a dummy below-context with copies of last row */
      for (i = 0; i < vs; i++)
	dummy[i] = fullsize_data[ci][(current+1)*vs-1];
      below_ptr = (JSAMPARRAY) dummy; /* possible near->far pointer conv */
    }

    (*cinfo->methods->downsample[ci])
		(cinfo, (int) ci,
		 fullsize_width, (int) vs,
		 compptr->downsampled_width, (int) compptr->v_samp_factor,
		 above_ptr,
		 fullsize_data[ci] + current * vs,
		 below_ptr,
		 sampled_data[ci] + out * compptr->v_samp_factor);
  }
}


/* These variables are initialized by the pipeline controller for use by
 * MCU_output_catcher.
 * To avoid a lot of row-pointer overhead, we cram as many MCUs into each
 * row of whole_scan_MCUs as we can get without exceeding 32Kbytes per row.
 * NOTE: the "arbitrary" constant here must not exceed MAX_ALLOC_CHUNK
 * defined in jmemsys.h, which is 64K-epsilon in most DOS implementations.
 */

#define MAX_WHOLE_ROW_BLOCKS	((int) (32768L / SIZEOF(JBLOCK))) /* max blocks/row */

static big_barray_ptr whole_scan_MCUs; /* Big array for saving the MCUs */
static int MCUs_in_big_row;	/* # of MCUs in each row of whole_scan_MCUs */
static long next_whole_row;	/* next row to access in whole_scan_MCUs */
static int next_MCU_index;	/* next MCU in current row */


METHODDEF void
MCU_output_catcher (compress_info_ptr cinfo, JBLOCK *MCU_data)
/* Output method for siphoning off extract_MCUs output into a big array */
{
  static JBLOCKARRAY rowptr;

  if (next_MCU_index >= MCUs_in_big_row) {
    rowptr = (*cinfo->emethods->access_big_barray) (whole_scan_MCUs,
						    next_whole_row, TRUE);
    next_whole_row++;
    next_MCU_index = 0;
  }

  /*
   * note that on 80x86, the cast applied to MCU_data implies
   * near to far pointer conversion.
   */
  jcopy_block_row((JBLOCKROW) MCU_data,
		  rowptr[0] + next_MCU_index * cinfo->blocks_in_MCU,
		  (long) cinfo->blocks_in_MCU);
  next_MCU_index++;
}


METHODDEF void
dump_scan_MCUs (compress_info_ptr cinfo, MCU_output_method_ptr output_method)
/* Dump the MCUs saved in whole_scan_MCUs to the output method. */
/* The method may be either the entropy encoder or some routine supplied */
/* by the entropy optimizer. */
{
  /* On an 80x86 machine, the entropy encoder expects the passed data block
   * to be in NEAR memory (for performance reasons), so we have to copy it
   * back from the big array to a local array.  On less brain-damaged CPUs
   * we needn't do that.
   */
#ifdef NEED_FAR_POINTERS
  JBLOCK MCU_data[MAX_BLOCKS_IN_MCU];
#endif
  long mcurow, mcuindex, next_row;
  int next_index;
  JBLOCKARRAY rowptr = NULL;	/* init only to suppress compiler complaint */

  next_row = 0;
  next_index = MCUs_in_big_row;

  for (mcurow = 0; mcurow < cinfo->MCU_rows_in_scan; mcurow++) {
    (*cinfo->methods->progress_monitor) (cinfo, mcurow,
					 cinfo->MCU_rows_in_scan);
    for (mcuindex = 0; mcuindex < cinfo->MCUs_per_row; mcuindex++) {
      if (next_index >= MCUs_in_big_row) {
	rowptr = (*cinfo->emethods->access_big_barray) (whole_scan_MCUs,
							next_row, FALSE);
	next_row++;
	next_index = 0;
      }
#ifdef NEED_FAR_POINTERS
      jcopy_block_row(rowptr[0] + next_index * cinfo->blocks_in_MCU,
		      (JBLOCKROW) MCU_data, /* casts near to far pointer! */
		      (long) cinfo->blocks_in_MCU);
      (*output_method) (cinfo, MCU_data);
#else
      (*output_method) (cinfo, rowptr[0] + next_index * cinfo->blocks_in_MCU);
#endif
      next_index++;
    }
  }

  cinfo->completed_passes++;
}



/*
 * Compression pipeline controller used for single-scan files
 * with no optimization of entropy parameters.
 */

METHODDEF void
single_ccontroller (compress_info_ptr cinfo)
{
  int rows_in_mem;		/* # of sample rows in full-size buffers */
  long fullsize_width;		/* # of samples per row in full-size buffers */
  long cur_pixel_row;		/* counts # of pixel rows processed */
  long mcu_rows_output;		/* # of MCU rows actually emitted */
  int mcu_rows_per_loop;	/* # of MCU rows processed per outer loop */
  /* Work buffer for pre-downsampling data (see comments at head of file) */
  JSAMPIMAGE fullsize_data[2];
  /* Work buffer for downsampled data */
  JSAMPIMAGE sampled_data;
  int rows_this_time;
  short ci, whichss, i;

  /* Prepare for single scan containing all components */
  if (cinfo->num_components > MAX_COMPS_IN_SCAN)
    ERREXIT(cinfo->emethods, "Too many components for interleaved scan");
  cinfo->comps_in_scan = cinfo->num_components;
  for (ci = 0; ci < cinfo->num_components; ci++) {
    cinfo->cur_comp_info[ci] = &cinfo->comp_info[ci];
  }
  if (cinfo->comps_in_scan == 1) {
    noninterleaved_scan_setup(cinfo);
    /* Vk block rows constitute the same number of MCU rows */
    mcu_rows_per_loop = cinfo->cur_comp_info[0]->v_samp_factor;
  } else {
    interleaved_scan_setup(cinfo);
    /* in an interleaved scan, one MCU row contains Vk block rows */
    mcu_rows_per_loop = 1;
  }
  cinfo->total_passes++;

  /* Compute dimensions of full-size pixel buffers */
  /* Note these are the same whether interleaved or not. */
  rows_in_mem = cinfo->max_v_samp_factor * DCTSIZE;
  fullsize_width = jround_up(cinfo->image_width,
			     (long) (cinfo->max_h_samp_factor * DCTSIZE));

  /* Allocate working memory: */
  /* fullsize_data is sample data before downsampling */
  alloc_sampling_buffer(cinfo, fullsize_data, fullsize_width);
  /* sampled_data is sample data after downsampling */
  sampled_data = (JSAMPIMAGE) (*cinfo->emethods->alloc_small)
				(cinfo->num_components * SIZEOF(JSAMPARRAY));
  for (ci = 0; ci < cinfo->num_components; ci++) {
    sampled_data[ci] = (*cinfo->emethods->alloc_small_sarray)
			(cinfo->comp_info[ci].downsampled_width,
			 (long) (cinfo->comp_info[ci].v_samp_factor * DCTSIZE));
  }

  /* Tell the memory manager to instantiate big arrays.
   * We don't need any big arrays in this controller,
   * but some other module (like the input file reader) may need one.
   */
  (*cinfo->emethods->alloc_big_arrays)
	((long) 0,				/* no more small sarrays */
	 (long) 0,				/* no more small barrays */
	 (long) 0);				/* no more "medium" objects */

  /* Initialize output file & do per-scan object init */

  (*cinfo->methods->write_scan_header) (cinfo);
  cinfo->methods->entropy_output = cinfo->methods->write_jpeg_data;
  (*cinfo->methods->entropy_encode_init) (cinfo);
  (*cinfo->methods->downsample_init) (cinfo);
  (*cinfo->methods->extract_init) (cinfo);

  /* Loop over input image: rows_in_mem pixel rows are processed per loop */

  mcu_rows_output = 0;
  whichss = 1;			/* arrange to start with fullsize_data[0] */

  for (cur_pixel_row = 0; cur_pixel_row < cinfo->image_height;
       cur_pixel_row += rows_in_mem) {
    (*cinfo->methods->progress_monitor) (cinfo, cur_pixel_row,
					 cinfo->image_height);

    whichss ^= 1;		/* switch to other fullsize_data buffer */
    
    /* Obtain rows_this_time pixel rows and expand to rows_in_mem rows. */
    /* Then we have exactly DCTSIZE row groups for downsampling. */   
    rows_this_time = (int) MIN((long) rows_in_mem,
			       cinfo->image_height - cur_pixel_row);
 
    (*cinfo->methods->get_sample_rows) (cinfo, rows_this_time,
					fullsize_data[whichss]);
    (*cinfo->methods->edge_expand) (cinfo,
				    cinfo->image_width, rows_this_time,
				    fullsize_width, rows_in_mem,
				    fullsize_data[whichss]);
    
    /* Downsample the data (all components) */
    /* First time through is a special case */
    
    if (cur_pixel_row) {
      /* Downsample last row group of previous set */
      downsample(cinfo, fullsize_data[whichss], sampled_data, fullsize_width,
		 (short) DCTSIZE, (short) (DCTSIZE+1), (short) 0,
		 (short) (DCTSIZE-1));
      /* and dump the previous set's downsampled data */
      (*cinfo->methods->extract_MCUs) (cinfo, sampled_data, 
				       mcu_rows_per_loop,
				       cinfo->methods->entropy_encode);
      mcu_rows_output += mcu_rows_per_loop;
      /* Downsample first row group of this set */
      downsample(cinfo, fullsize_data[whichss], sampled_data, fullsize_width,
		 (short) (DCTSIZE+1), (short) 0, (short) 1,
		 (short) 0);
    } else {
      /* Downsample first row group with dummy above-context */
      downsample(cinfo, fullsize_data[whichss], sampled_data, fullsize_width,
		 (short) (-1), (short) 0, (short) 1,
		 (short) 0);
    }
    /* Downsample second through next-to-last row groups of this set */
    for (i = 1; i <= DCTSIZE-2; i++) {
      downsample(cinfo, fullsize_data[whichss], sampled_data, fullsize_width,
		 (short) (i-1), (short) i, (short) (i+1),
		 (short) i);
    }
  } /* end of outer loop */
  
  /* Downsample the last row group with dummy below-context */
  /* Note whichss points to last buffer side used */
  downsample(cinfo, fullsize_data[whichss], sampled_data, fullsize_width,
	     (short) (DCTSIZE-2), (short) (DCTSIZE-1), (short) (-1),
	     (short) (DCTSIZE-1));
  /* Dump the remaining data (may be less than full height if uninterleaved) */
  (*cinfo->methods->extract_MCUs) (cinfo, sampled_data, 
		(int) (cinfo->MCU_rows_in_scan - mcu_rows_output),
		cinfo->methods->entropy_encode);

  /* Finish output file */
  (*cinfo->methods->extract_term) (cinfo);
  (*cinfo->methods->downsample_term) (cinfo);
  (*cinfo->methods->entropy_encode_term) (cinfo);
  (*cinfo->methods->write_scan_trailer) (cinfo);
  cinfo->completed_passes++;

  /* Release working memory */
  /* (no work -- we let free_all release what's needful) */
}


/*
 * Compression pipeline controller used for single-scan files
 * with optimization of entropy parameters.
 */

#ifdef ENTROPY_OPT_SUPPORTED

METHODDEF void
single_eopt_ccontroller (compress_info_ptr cinfo)
{
  int rows_in_mem;		/* # of sample rows in full-size buffers */
  long fullsize_width;		/* # of samples per row in full-size buffers */
  long cur_pixel_row;		/* counts # of pixel rows processed */
  long mcu_rows_output;		/* # of MCU rows actually emitted */
  int mcu_rows_per_loop;	/* # of MCU rows processed per outer loop */
  /* Work buffer for pre-downsampling data (see comments at head of file) */
  JSAMPIMAGE fullsize_data[2];
  /* Work buffer for downsampled data */
  JSAMPIMAGE sampled_data;
  int rows_this_time;
  int blocks_in_big_row;
  short ci, whichss, i;

  /* Prepare for single scan containing all components */
  if (cinfo->num_components > MAX_COMPS_IN_SCAN)
    ERREXIT(cinfo->emethods, "Too many components for interleaved scan");
  cinfo->comps_in_scan = cinfo->num_components;
  for (ci = 0; ci < cinfo->num_components; ci++) {
    cinfo->cur_comp_info[ci] = &cinfo->comp_info[ci];
  }
  if (cinfo->comps_in_scan == 1) {
    noninterleaved_scan_setup(cinfo);
    /* Vk block rows constitute the same number of MCU rows */
    mcu_rows_per_loop = cinfo->cur_comp_info[0]->v_samp_factor;
  } else {
    interleaved_scan_setup(cinfo);
    /* in an interleaved scan, one MCU row contains Vk block rows */
    mcu_rows_per_loop = 1;
  }
  cinfo->total_passes += 2;	/* entropy encoder must add # passes it uses */

  /* Compute dimensions of full-size pixel buffers */
  /* Note these are the same whether interleaved or not. */
  rows_in_mem = cinfo->max_v_samp_factor * DCTSIZE;
  fullsize_width = jround_up(cinfo->image_width,
			     (long) (cinfo->max_h_samp_factor * DCTSIZE));

  /* Allocate working memory: */
  /* fullsize_data is sample data before downsampling */
  alloc_sampling_buffer(cinfo, fullsize_data, fullsize_width);
  /* sampled_data is sample data after downsampling */
  sampled_data = (JSAMPIMAGE) (*cinfo->emethods->alloc_small)
				(cinfo->num_components * SIZEOF(JSAMPARRAY));
  for (ci = 0; ci < cinfo->num_components; ci++) {
    sampled_data[ci] = (*cinfo->emethods->alloc_small_sarray)
			(cinfo->comp_info[ci].downsampled_width,
			 (long) (cinfo->comp_info[ci].v_samp_factor * DCTSIZE));
  }

  /* Figure # of MCUs to be packed in a row of whole_scan_MCUs */
  MCUs_in_big_row = MAX_WHOLE_ROW_BLOCKS / cinfo->blocks_in_MCU;
  blocks_in_big_row = MCUs_in_big_row * cinfo->blocks_in_MCU;

  /* Request a big array: whole_scan_MCUs saves the MCU data for the scan */
  whole_scan_MCUs = (*cinfo->emethods->request_big_barray)
		((long) blocks_in_big_row,
		 (long) (cinfo->MCUs_per_row * cinfo->MCU_rows_in_scan
			 + MCUs_in_big_row-1) / MCUs_in_big_row,
		 1L);		/* unit height is 1 row */

  next_whole_row = 0;		/* init output ptr for MCU_output_catcher */
  next_MCU_index = MCUs_in_big_row; /* forces access on first call! */

  /* Tell the memory manager to instantiate big arrays */
  (*cinfo->emethods->alloc_big_arrays)
	((long) 0,				/* no more small sarrays */
	 (long) 0,				/* no more small barrays */
	 (long) 0);				/* no more "medium" objects */

  /* Do per-scan object init */

  (*cinfo->methods->downsample_init) (cinfo);
  (*cinfo->methods->extract_init) (cinfo);

  /* Loop over input image: rows_in_mem pixel rows are processed per loop */
  /* MCU data goes into whole_scan_MCUs, not to the entropy encoder */

  mcu_rows_output = 0;
  whichss = 1;			/* arrange to start with fullsize_data[0] */

  for (cur_pixel_row = 0; cur_pixel_row < cinfo->image_height;
       cur_pixel_row += rows_in_mem) {
    (*cinfo->methods->progress_monitor) (cinfo, cur_pixel_row,
					 cinfo->image_height);

    whichss ^= 1;		/* switch to other fullsize_data buffer */
    
    /* Obtain rows_this_time pixel rows and expand to rows_in_mem rows. */
    /* Then we have exactly DCTSIZE row groups for downsampling. */   
    rows_this_time = (int) MIN((long) rows_in_mem,
			       cinfo->image_height - cur_pixel_row);
 
    (*cinfo->methods->get_sample_rows) (cinfo, rows_this_time,
					fullsize_data[whichss]);
    (*cinfo->methods->edge_expand) (cinfo,
				    cinfo->image_width, rows_this_time,
				    fullsize_width, rows_in_mem,
				    fullsize_data[whichss]);
    
    /* Downsample the data (all components) */
    /* First time through is a special case */
    
    if (cur_pixel_row) {
      /* Downsample last row group of previous set */
      downsample(cinfo, fullsize_data[whichss], sampled_data, fullsize_width,
		 (short) DCTSIZE, (short) (DCTSIZE+1), (short) 0,
		 (short) (DCTSIZE-1));
      /* and dump the previous set's downsampled data */
      (*cinfo->methods->extract_MCUs) (cinfo, sampled_data, 
				       mcu_rows_per_loop,
				       MCU_output_catcher);
      mcu_rows_output += mcu_rows_per_loop;
      /* Downsample first row group of this set */
      downsample(cinfo, fullsize_data[whichss], sampled_data, fullsize_width,
		 (short) (DCTSIZE+1), (short) 0, (short) 1,
		 (short) 0);
    } else {
      /* Downsample first row group with dummy above-context */
      downsample(cinfo, fullsize_data[whichss], sampled_data, fullsize_width,
		 (short) (-1), (short) 0, (short) 1,
		 (short) 0);
    }
    /* Downsample second through next-to-last row groups of this set */
    for (i = 1; i <= DCTSIZE-2; i++) {
      downsample(cinfo, fullsize_data[whichss], sampled_data, fullsize_width,
		 (short) (i-1), (short) i, (short) (i+1),
		 (short) i);
    }
  } /* end of outer loop */
  
  /* Downsample the last row group with dummy below-context */
  /* Note whichss points to last buffer side used */
  downsample(cinfo, fullsize_data[whichss], sampled_data, fullsize_width,
	     (short) (DCTSIZE-2), (short) (DCTSIZE-1), (short) (-1),
	     (short) (DCTSIZE-1));
  /* Dump the remaining data (may be less than full height if uninterleaved) */
  (*cinfo->methods->extract_MCUs) (cinfo, sampled_data, 
		(int) (cinfo->MCU_rows_in_scan - mcu_rows_output),
		MCU_output_catcher);

  /* Clean up after that stuff, then find the optimal entropy parameters */

  (*cinfo->methods->extract_term) (cinfo);
  (*cinfo->methods->downsample_term) (cinfo);

  cinfo->completed_passes++;

  (*cinfo->methods->entropy_optimize) (cinfo, dump_scan_MCUs);

  /* Emit scan to output file */
  /* Note: we can't do write_scan_header until entropy parameters are set! */

  (*cinfo->methods->write_scan_header) (cinfo);
  cinfo->methods->entropy_output = cinfo->methods->write_jpeg_data;
  (*cinfo->methods->entropy_encode_init) (cinfo);
  dump_scan_MCUs(cinfo, cinfo->methods->entropy_encode);
  (*cinfo->methods->entropy_encode_term) (cinfo);
  (*cinfo->methods->write_scan_trailer) (cinfo);

  /* Release working memory */
  /* (no work -- we let free_all release what's needful) */
}

#endif /* ENTROPY_OPT_SUPPORTED */


/*
 * Compression pipeline controller used for multiple-scan files
 * with no optimization of entropy parameters.
 */

#ifdef C_MULTISCAN_FILES_SUPPORTED

METHODDEF void
multi_ccontroller (compress_info_ptr cinfo)
{
  ERREXIT(cinfo->emethods, "Not implemented yet");
}

#endif /* C_MULTISCAN_FILES_SUPPORTED */


/*
 * Compression pipeline controller used for multiple-scan files
 * with optimization of entropy parameters.
 */

#ifdef C_MULTISCAN_FILES_SUPPORTED
#ifdef ENTROPY_OPT_SUPPORTED

METHODDEF void
multi_eopt_ccontroller (compress_info_ptr cinfo)
{
  ERREXIT(cinfo->emethods, "Not implemented yet");
}

#endif /* ENTROPY_OPT_SUPPORTED */
#endif /* C_MULTISCAN_FILES_SUPPORTED */


/*
 * The method selection routine for compression pipeline controllers.
 */

GLOBAL void
jselcpipeline (compress_info_ptr cinfo)
{
  if (cinfo->interleave || cinfo->num_components == 1) {
    /* single scan needed */
#ifdef ENTROPY_OPT_SUPPORTED
    if (cinfo->optimize_coding)
      cinfo->methods->c_pipeline_controller = single_eopt_ccontroller;
    else
#endif
      cinfo->methods->c_pipeline_controller = single_ccontroller;
  } else {
    /* multiple scans needed */
#ifdef C_MULTISCAN_FILES_SUPPORTED
#ifdef ENTROPY_OPT_SUPPORTED
    if (cinfo->optimize_coding)
      cinfo->methods->c_pipeline_controller = multi_eopt_ccontroller;
    else
#endif
      cinfo->methods->c_pipeline_controller = multi_ccontroller;
#else
    ERREXIT(cinfo->emethods, "Multiple-scan support was not compiled");
#endif
  }
}