File: loop.c

package info (click to toggle)
xlockmore 4.09-3
  • links: PTS
  • area: main
  • in suites: hamm
  • size: 5,440 kB
  • ctags: 6,552
  • sloc: ansic: 54,180; sh: 1,624; makefile: 689; tcl: 439; java: 269; perl: 149
file content (597 lines) | stat: -rw-r--r-- 17,567 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
/* -*- Mode: C; tab-width: 4 -*- */
/* loop --- Chris Langton's self-producing loops */

#if !defined( lint ) && !defined( SABER )
static const char sccsid[] = "@(#)loop.c	4.07 97/11/24 xlockmore";

#endif

/*-
 * Copyright (c) 1996 by David Bagley.
 *
 * Permission to use, copy, modify, and distribute this software and its
 * documentation for any purpose and without fee is hereby granted,
 * provided that the above copyright notice appear in all copies and that
 * both that copyright notice and this permission notice appear in
 * supporting documentation.
 *
 * This file is provided AS IS with no warranties of any kind.  The author
 * shall have no liability with respect to the infringement of copyrights,
 * trade secrets or any patents by this file or any part thereof.  In no
 * event will the author be liable for any lost revenue or profits or
 * other special, indirect and consequential damages.
 *
 * Revision History:
 * 10-May-97: Compatible with xscreensaver
 * 15-Nov-95: Coded from Chris Langton's Self-Reproduction in Cellular
 *            Automata Physica 10D 135-144 1984
 *            also used wire.c as a guide.
 */

/*-
 * From Steven Levy's Artificial Life
 * Chris Langton's cellular automata "loops" reproduce in the spirit of life.
 * Beginning from a single organism, the loops from a colony.  As the loops
 * on the outer fringes reproduce, the inner loops -- blocked by their
 * daughters -- can no longer produce offspring.  These dead progenitors
 * provide a base for future generations' expansion, much like the formation
 * of a coral reef.  This self-organizing behavior emerges spontaneously,
 * from the bottom up -- a key characteristic of artificial life.
 */

/*-
   Don't Panic  --  When the artificial life tries to leave its petri
   dish (ie. the screen) it will (usually) die...
   The loops are short of "real" life because a general purpose Turing
   machine is not contained in the loop.  This is a simplification of
   von Neumann and Codd's self-producing Turing machine.
 */

#ifdef STANDALONE
#define PROGCLASS "loop"
#define HACK_INIT init_loop
#define HACK_DRAW draw_loop
#define loop_opts xlockmore_opts
#define DEFAULTS "*delay: 100000 \n" \
 "*cycles: 1600 \n" \
 "*size: -12 \n" \
 "*ncolors: 15 \n"
#define SPREAD_COLORS
#include "xlockmore.h"		/* in xscreensaver distribution */
#else /* STANDALONE */
#include "xlock.h"		/* in xlockmore distribution */
#endif /* STANDALONE */

ModeSpecOpt loop_opts =
{0, NULL, 0, NULL, NULL};

#ifdef USE_MODULES
ModStruct   loop_description =
{"loop", "init_loop", "draw_loop", "release_loop",
 "refresh_loop", "init_loop", NULL, &loop_opts,
 100000, 1, 1600, -12, 64, 1.0, "",
 "Shows Langton's self-producing loops", 0, NULL};

#endif

#define LOOPBITS(n,w,h)\
  lp->pixmaps[lp->init_bits++]=\
  XCreatePixmapFromBitmapData(display,window,(char *)n,w,h,1,0,1)

#define COLORS 8
#define REALCOLORS (COLORS-2)
#define MINLOOPS 1
#define REDRAWSTEP 2000		/* How many cells to draw per cycle */
#define ADAM_LOOPX 16
#define ADAM_LOOPY 10
#define MINGRIDSIZE (3*ADAM_LOOPX)
#define MINSIZE 1

/* Singly linked list */
typedef struct _RectList {
	XPoint      pt;
	struct _RectList *next;
} RectList;

typedef struct {
	int         init_bits;
	int         generation;
	int         xs, ys;
	int         xb, yb;
	int         nrows, ncols;
	int         bnrows, bncols;
	int         mincol, minrow, maxcol, maxrow;
	int         width, height;
	int         redrawing, redrawpos;
	unsigned char *newcells, *oldcells;
	unsigned int colors[COLORS];
	int         nrects[COLORS];
	RectList   *rectlist[COLORS];
	GC          stippledGC;
	Pixmap      pixmaps[COLORS];
} loopstruct;

static loopstruct *loops = NULL;

#define TRANSITION(TT,V) V=TT&7;TT>>=3
#define TABLE(T,R,B,L) (table[((T)<<9)|((R)<<6)|((B)<<3)|(L)])
#ifdef RAND_RULES		/* Hack, see below */
#define TABLE_IN(C,T,R,B,L,I) (TABLE(T,R,B,L)&=~(7<<((C)*3)));\
(TABLE(T,R,B,L)|=((I)<<((C)*3)))
#else
#define TABLE_IN(C,T,R,B,L,I) (TABLE(T,R,B,L)|=((I)<<((C)*3)))
#endif
#define TABLE_OUT(C,T,R,B,L) ((TABLE(T,R,B,L)>>((C)*3))&7)
static unsigned int *table = NULL;	/* 8*8*8*8 = 2^12 = 2^3^4 = 4K */

static unsigned int transition_table[] =
{				/* Octal */
/* CTRBL->I CTRBL->I CTRBL->I CTRBL->I CTRBL->I */
	0000000, 0025271, 0113221, 0202422, 0301021,
	0000012, 0100011, 0122244, 0202452, 0301220,
	0000020, 0100061, 0122277, 0202520, 0302511,
	0000030, 0100077, 0122434, 0202552, 0401120,
	0000050, 0100111, 0122547, 0202622, 0401220,
	0000063, 0100121, 0123244, 0202722, 0401250,
	0000071, 0100211, 0123277, 0203122, 0402120,
	0000112, 0100244, 0124255, 0203216, 0402221,
	0000122, 0100277, 0124267, 0203226, 0402326,
	0000132, 0100511, 0125275, 0203422, 0402520,
	0000212, 0101011, 0200012, 0204222, 0403221,
	0000220, 0101111, 0200022, 0205122, 0500022,
	0000230, 0101244, 0200042, 0205212, 0500215,
	0000262, 0101277, 0200071, 0205222, 0500225,
	0000272, 0102026, 0200122, 0205521, 0500232,
	0000320, 0102121, 0200152, 0205725, 0500272,
	0000525, 0102211, 0200212, 0206222, 0500520,
	0000622, 0102244, 0200222, 0206722, 0502022,
	0000722, 0102263, 0200232, 0207122, 0502122,
	0001022, 0102277, 0200242, 0207222, 0502152,
	0001120, 0102327, 0200250, 0207422, 0502220,
	0002020, 0102424, 0200262, 0207722, 0502244,
	0002030, 0102626, 0200272, 0211222, 0502722,
	0002050, 0102644, 0200326, 0211261, 0512122,
	0002125, 0102677, 0200423, 0212222, 0512220,
	0002220, 0102710, 0200517, 0212242, 0512422,
	0002322, 0102727, 0200522, 0212262, 0512722,
	0005222, 0105427, 0200575, 0212272, 0600011,
	0012321, 0111121, 0200722, 0214222, 0600021,
	0012421, 0111221, 0201022, 0215222, 0602120,
	0012525, 0111244, 0201122, 0216222, 0612125,
	0012621, 0111251, 0201222, 0217222, 0612131,
	0012721, 0111261, 0201422, 0222272, 0612225,
	0012751, 0111277, 0201722, 0222442, 0700077,
	0014221, 0111522, 0202022, 0222462, 0701120,
	0014321, 0112121, 0202032, 0222762, 0701220,
	0014421, 0112221, 0202052, 0222772, 0701250,
	0014721, 0112244, 0202073, 0300013, 0702120,
	0016251, 0112251, 0202122, 0300022, 0702221,
	0017221, 0112277, 0202152, 0300041, 0702251,
	0017255, 0112321, 0202212, 0300076, 0702321,
	0017521, 0112424, 0202222, 0300123, 0702525,
	0017621, 0112621, 0202272, 0300421, 0702720,
	0017721, 0112727, 0202321, 0300622
};


/*-
Neighborhoods are read as follows (rotations are not listed):
    T
  L C R  ==>  I
    B
 */

static unsigned char self_reproducing_loop[ADAM_LOOPY][ADAM_LOOPX] =
{
	{0, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0},
	{2, 1, 7, 0, 1, 4, 0, 1, 4, 2, 0, 0, 0, 0, 0},
	{2, 0, 2, 2, 2, 2, 2, 2, 0, 2, 0, 0, 0, 0, 0},
	{2, 7, 2, 0, 0, 0, 0, 2, 1, 2, 0, 0, 0, 0, 0},
	{2, 1, 2, 0, 0, 0, 0, 2, 1, 2, 0, 0, 0, 0, 0},
	{2, 0, 2, 0, 0, 0, 0, 2, 1, 2, 0, 0, 0, 0, 0},
	{2, 7, 2, 0, 0, 0, 0, 2, 1, 2, 0, 0, 0, 0, 0},
	{2, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 0},
	{2, 0, 7, 1, 0, 7, 1, 0, 7, 1, 1, 1, 1, 1, 2},
	{0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0}
};

static void
addtolist(ModeInfo * mi, int col, int row, unsigned char state)
{
	loopstruct *lp = &loops[MI_SCREEN(mi)];
	RectList   *current;

	current = lp->rectlist[state];
	lp->rectlist[state] = (RectList *) malloc(sizeof (RectList));
	lp->rectlist[state]->pt.x = col;
	lp->rectlist[state]->pt.y = row;
	lp->rectlist[state]->next = current;
	lp->nrects[state]++;
}

#ifdef DEBUG
static void
print_state(ModeInfo * mi, int state)
{
	loopstruct *lp = &loops[MI_SCREEN(mi)];
	RectList   *locallist;
	int         i = 0;

	locallist = lp->rectlist[state];
	(void) printf("state %d\n", state);
	while (locallist) {
		(void) printf("%d x %d, y %d\n", i,
			      locallist->pt.x, locallist->pt.y);
		locallist = locallist->next;
		i++;
	}
}

#endif

static void
free_state(loopstruct * lp, int state)
{
	RectList   *current;

	while (lp->rectlist[state]) {
		current = lp->rectlist[state];
		lp->rectlist[state] = lp->rectlist[state]->next;
		(void) free((void *) current);
	}
	lp->rectlist[state] = NULL;
	lp->nrects[state] = 0;
}

static void
drawcell(ModeInfo * mi, int col, int row, int state)
{
	loopstruct *lp = &loops[MI_SCREEN(mi)];
	XGCValues   gcv;
	GC          gc;

	if (MI_NPIXELS(mi) >= COLORS) {
		gc = MI_GC(mi);
		XSetForeground(MI_DISPLAY(mi), gc, lp->colors[state]);
	} else {
		gcv.stipple = lp->pixmaps[state];
		gcv.foreground = MI_WHITE_PIXEL(mi);
		gcv.background = MI_BLACK_PIXEL(mi);
		XChangeGC(MI_DISPLAY(mi), lp->stippledGC,
			  GCStipple | GCForeground | GCBackground, &gcv);
		gc = lp->stippledGC;
	}
	XFillRectangle(MI_DISPLAY(mi), MI_WINDOW(mi), gc,
	       lp->xb + lp->xs * col, lp->yb + lp->ys * row, lp->xs, lp->ys);
}

static void
draw_state(ModeInfo * mi, int state)
{
	loopstruct *lp = &loops[MI_SCREEN(mi)];
	GC          gc;
	XRectangle *rects;
	XGCValues   gcv;
	RectList   *current;

	if (MI_NPIXELS(mi) >= COLORS) {
		gc = MI_GC(mi);
		XSetForeground(MI_DISPLAY(mi), gc, lp->colors[state]);
	} else {
		gcv.stipple = lp->pixmaps[state];
		gcv.foreground = MI_WHITE_PIXEL(mi);
		gcv.background = MI_BLACK_PIXEL(mi);
		XChangeGC(MI_DISPLAY(mi), lp->stippledGC,
			  GCStipple | GCForeground | GCBackground, &gcv);
		gc = lp->stippledGC;
	}

	{
		/* Take advantage of XFillRectangles */
		int         nrects = 0;

		/* Create Rectangle list from part of the rectlist */
		rects = (XRectangle *) malloc(lp->nrects[state] * sizeof (XRectangle));
		current = lp->rectlist[state];
		while (current) {
			rects[nrects].x = lp->xb + current->pt.x * lp->xs;
			rects[nrects].y = lp->yb + current->pt.y * lp->ys;
			rects[nrects].width = lp->xs;
			rects[nrects].height = lp->ys;
			current = current->next;
			nrects++;
		}
		/* Finally get to draw */
		XFillRectangles(MI_DISPLAY(mi), MI_WINDOW(mi), gc, rects, nrects);
		/* Free up rects list and the appropriate part of the rectlist */
		(void) free((void *) rects);
	}
	free_state(lp, state);
	XFlush(MI_DISPLAY(mi));
}

static void
init_table(void)
{
	if (table == NULL) {
		unsigned int tt, c, t, r, b, l, i;
		int         j, size_transition_table = sizeof (transition_table) /
		sizeof (unsigned int);

		if ((table = (unsigned int *) calloc(8 * 8 * 8 * 8,
					     sizeof (unsigned int))) == NULL)
			            return;

#ifdef RAND_RULES
		/* Here I was interested to see what happens when it hits a wall....
		   Rules not normally used take over... */
		{
			int         k;

			for (j = 0; j < 8 * 8 * 8 * 8; j++) {
				for (k = 0; k < 8; k++)
					table[j] |= (unsigned int) ((unsigned int) (NRAND(8)) << (k * 3));
			}
		}
#endif
		for (j = 0; j < size_transition_table; j++) {
			tt = transition_table[j];
			TRANSITION(tt, i);
			TRANSITION(tt, l);
			TRANSITION(tt, b);
			TRANSITION(tt, r);
			TRANSITION(tt, t);
			TRANSITION(tt, c);
			TABLE_IN(c, t, r, b, l, i);
			TABLE_IN(c, r, b, l, t, i);
			TABLE_IN(c, b, l, t, r, i);
			TABLE_IN(c, l, t, r, b, i);
		}
	}
}

static void
init_adam(loopstruct * lp)
{
	XPoint      start, dirx, diry;
	int         i, j;

	switch (NRAND(4)) {
		case 0:
			start.x = (lp->bncols - ADAM_LOOPX) / 2;
			start.y = (lp->bnrows - ADAM_LOOPY) / 2;
			dirx.x = 1, dirx.y = 0;
			diry.x = 0, diry.y = 1;
			lp->mincol = start.x, lp->minrow = start.y;
			lp->maxcol = start.x + ADAM_LOOPX, lp->maxrow = start.y + ADAM_LOOPY;
			break;
		case 1:
			start.x = (lp->bncols + ADAM_LOOPY) / 2;
			start.y = (lp->bnrows - ADAM_LOOPX) / 2;
			dirx.x = 0, dirx.y = 1;
			diry.x = -1, diry.y = 0;
			lp->mincol = start.x - ADAM_LOOPY, lp->minrow = start.y;
			lp->maxcol = start.x, lp->maxrow = start.y + ADAM_LOOPX;
			break;
		case 2:
			start.x = (lp->bncols + ADAM_LOOPX) / 2;
			start.y = (lp->bnrows + ADAM_LOOPY) / 2;
			dirx.x = -1, dirx.y = 0;
			diry.x = 0, diry.y = -1;
			lp->mincol = start.x - ADAM_LOOPX, lp->minrow = start.y - ADAM_LOOPY;
			lp->maxcol = start.x, lp->maxrow = start.y;
			break;
		case 3:
			start.x = (lp->bncols - ADAM_LOOPY) / 2;
			start.y = (lp->bnrows + ADAM_LOOPX) / 2;
			dirx.x = 0, dirx.y = -1;
			diry.x = 1, diry.y = 0;
			lp->mincol = start.x, lp->minrow = start.y - ADAM_LOOPX;
			lp->maxcol = start.x + ADAM_LOOPY, lp->maxrow = start.y;
			break;
	}
	for (j = 0; j < ADAM_LOOPY; j++)
		for (i = 0; i < ADAM_LOOPX; i++)
			lp->newcells[(start.y + dirx.y * i + diry.y * j) * lp->bncols +
				     start.x + dirx.x * i + diry.x * j] =
				self_reproducing_loop[j][i];
}

static void
do_gen(loopstruct * lp)
{
	int         i, j;
	unsigned char *z;
	unsigned int c, t, r, b, l;

	for (j = lp->minrow; j <= lp->maxrow; j++) {
		for (i = lp->mincol; i <= lp->maxcol; i++) {
			z = lp->newcells + i + j * lp->bncols;
			c = *(lp->oldcells + i + j * lp->bncols);
			t = *(lp->oldcells + i + (j - 1) * lp->bncols);
			r = *(lp->oldcells + i + 1 + j * lp->bncols);
			b = *(lp->oldcells + i + (j + 1) * lp->bncols);
			l = *(lp->oldcells + i - 1 + j * lp->bncols);
			*z = TABLE_OUT(c, t, r, b, l);
		}
	}
}

static void
free_list(loopstruct * lp)
{
	int         state;

	for (state = 0; state < COLORS; state++)
		free_state(lp, state);
}

void
init_loop(ModeInfo * mi)
{
	Display    *display = MI_DISPLAY(mi);
	Window      window = MI_WINDOW(mi);
	int         size = MI_SIZE(mi);
	loopstruct *lp;
	XGCValues   gcv;

	if (loops == NULL) {
		if ((loops = (loopstruct *) calloc(MI_NUM_SCREENS(mi),
					       sizeof (loopstruct))) == NULL)
			return;
	}
	lp = &loops[MI_SCREEN(mi)];
	lp->redrawing = 0;
	if (MI_NPIXELS(mi) < COLORS) {
		if (lp->stippledGC == None) {
			gcv.fill_style = FillOpaqueStippled;
			lp->stippledGC = XCreateGC(display, window, GCFillStyle, &gcv);
		}
		if (lp->init_bits == 0) {
			LOOPBITS(stipples[0], STIPPLESIZE, STIPPLESIZE);
			LOOPBITS(stipples[2], STIPPLESIZE, STIPPLESIZE);
			LOOPBITS(stipples[3], STIPPLESIZE, STIPPLESIZE);
			LOOPBITS(stipples[4], STIPPLESIZE, STIPPLESIZE);
			LOOPBITS(stipples[6], STIPPLESIZE, STIPPLESIZE);
			LOOPBITS(stipples[7], STIPPLESIZE, STIPPLESIZE);
			LOOPBITS(stipples[8], STIPPLESIZE, STIPPLESIZE);
			LOOPBITS(stipples[10], STIPPLESIZE, STIPPLESIZE);
		}
	}
	if (MI_NPIXELS(mi) >= COLORS) {
		/* Maybe these colors should be randomized */
		lp->colors[0] = MI_BLACK_PIXEL(mi);
		lp->colors[1] = MI_PIXEL(mi, 0);	/* RED */
		lp->colors[5] = MI_PIXEL(mi, MI_NPIXELS(mi) / REALCOLORS);	/* YELLOW */
		lp->colors[4] = MI_PIXEL(mi, 2 * MI_NPIXELS(mi) / REALCOLORS);	/* GREEN */
		lp->colors[6] = MI_PIXEL(mi, 3 * MI_NPIXELS(mi) / REALCOLORS);	/* CYAN */
		lp->colors[2] = MI_PIXEL(mi, 4 * MI_NPIXELS(mi) / REALCOLORS);	/* BLUE */
		lp->colors[3] = MI_PIXEL(mi, 5 * MI_NPIXELS(mi) / REALCOLORS);	/* MAGENTA */
		lp->colors[7] = MI_WHITE_PIXEL(mi);
	}
	free_list(lp);
	lp->generation = 0;

	lp->width = MI_WIN_WIDTH(mi);
	lp->height = MI_WIN_HEIGHT(mi);

	if (size < -MINSIZE)
		lp->ys = NRAND(MIN(-size, MAX(MINSIZE, MIN(lp->width, lp->height) /
				      MINGRIDSIZE)) - MINSIZE + 1) + MINSIZE;
	else if (size < MINSIZE) {
		if (!size)
			lp->ys = MAX(MINSIZE, MIN(lp->width, lp->height) / MINGRIDSIZE);
		else
			lp->ys = MINSIZE;
	} else
		lp->ys = MIN(size, MAX(MINSIZE, MIN(lp->width, lp->height) /
				       MINGRIDSIZE));
	lp->xs = lp->ys;
	lp->ncols = MAX(lp->width / lp->xs, ADAM_LOOPX + 1);
	lp->nrows = MAX(lp->height / lp->ys, ADAM_LOOPX + 1);
	lp->xb = (lp->width - lp->xs * lp->ncols) / 2;
	lp->yb = (lp->height - lp->ys * lp->nrows) / 2;

	lp->bncols = lp->ncols + 2;
	lp->bnrows = lp->nrows + 2;

	MI_CLEARWINDOW(mi);

	if (lp->oldcells != NULL)
		(void) free((void *) lp->oldcells);
	lp->oldcells = (unsigned char *)
		calloc(lp->bncols * lp->bnrows, sizeof (unsigned char));

	if (lp->newcells != NULL)
		(void) free((void *) lp->newcells);
	lp->newcells = (unsigned char *)
		calloc(lp->bncols * lp->bnrows, sizeof (unsigned char));

	init_table();
	init_adam(lp);
}

void
draw_loop(ModeInfo * mi)
{
	loopstruct *lp = &loops[MI_SCREEN(mi)];
	int         offset, i, j, life = 0;
	unsigned char *z, *znew;

	for (j = lp->minrow; j <= lp->maxrow; j++) {
		for (i = lp->mincol; i <= lp->maxcol; i++) {
			offset = j * lp->bncols + i;
			z = lp->oldcells + offset;
			znew = lp->newcells + offset;
			if (*z != *znew) {
				*z = *znew;
				addtolist(mi, i - 1, j - 1, *znew);
				life = 1;
				if (i == lp->mincol && i > 1)
					lp->mincol--;
				if (j == lp->minrow && j > 1)
					lp->minrow--;
				if (i == lp->maxcol && i < lp->bncols - 2)
					lp->maxcol++;
				if (j == lp->maxrow && j < lp->bnrows - 2)
					lp->maxrow++;
			}
		}
	}
	for (i = 0; i < COLORS; i++)
		draw_state(mi, i);
	if (++lp->generation > MI_CYCLES(mi) || !life)
		init_loop(mi);
	else
		do_gen(lp);

	if (lp->redrawing) {
		for (i = 0; i < REDRAWSTEP; i++) {
			if ((*(lp->oldcells + lp->redrawpos))) {
				drawcell(mi, lp->redrawpos % lp->bncols - 1,
					 lp->redrawpos / lp->bncols - 1, *(lp->oldcells + lp->redrawpos));
			}
			if (++(lp->redrawpos) >= lp->bncols * (lp->bnrows - 1)) {
				lp->redrawing = 0;
				break;
			}
		}
	}
}

void
release_loop(ModeInfo * mi)
{
	if (loops != NULL) {
		int         screen, shade;

		for (screen = 0; screen < MI_NUM_SCREENS(mi); screen++) {
			loopstruct *lp = &loops[screen];

			free_list(lp);
			for (shade = 0; shade < lp->init_bits; shade++)
				XFreePixmap(MI_DISPLAY(mi), lp->pixmaps[shade]);
			if (lp->stippledGC != None)
				XFreeGC(MI_DISPLAY(mi), lp->stippledGC);
			if (lp->oldcells != NULL)
				(void) free((void *) lp->oldcells);
			if (lp->newcells != NULL)
				(void) free((void *) lp->newcells);
		}
		(void) free((void *) loops);
		loops = NULL;
	}
	if (table != NULL) {
		(void) free((void *) table);
		table = NULL;
	}
}

void
refresh_loop(ModeInfo * mi)
{
	loopstruct *lp = &loops[MI_SCREEN(mi)];

	lp->redrawing = 1;
	lp->redrawpos = lp->bncols + 1;
}