File: pandas_conditional_format.py

package info (click to toggle)
xlsxwriter 3.1.9-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 56,308 kB
  • sloc: python: 51,511; javascript: 7,768; sh: 284; makefile: 195; perl: 75
file content (33 lines) | stat: -rw-r--r-- 1,065 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
##############################################################################
#
# An example of converting a Pandas dataframe to an xlsx file with a
# conditional formatting using Pandas and XlsxWriter.
#
# SPDX-License-Identifier: BSD-2-Clause
# Copyright 2013-2023, John McNamara, jmcnamara@cpan.org
#

import pandas as pd


# Create a Pandas dataframe from some data.
df = pd.DataFrame({"Data": [10, 20, 30, 20, 15, 30, 45]})

# Create a Pandas Excel writer using XlsxWriter as the engine.
writer = pd.ExcelWriter("pandas_conditional.xlsx", engine="xlsxwriter")

# Convert the dataframe to an XlsxWriter Excel object.
df.to_excel(writer, sheet_name="Sheet1")

# Get the xlsxwriter workbook and worksheet objects.
workbook = writer.book
worksheet = writer.sheets["Sheet1"]

# Get the dimensions of the dataframe.
(max_row, max_col) = df.shape

# Apply a conditional format to the required cell range.
worksheet.conditional_format(1, max_col, max_row, max_col, {"type": "3_color_scale"})

# Close the Pandas Excel writer and output the Excel file.
writer.close()