File: lzip_decompress.c

package info (click to toggle)
xlunzip 0.4-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 276 kB
  • sloc: ansic: 2,063; sh: 430; makefile: 109
file content (882 lines) | stat: -rw-r--r-- 24,502 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
/*
 * LZIP decompressor
 *
 * Copyright (C) 2016-2018 Antonio Diaz Diaz.
 *
 * Licensed under GPLv2 or later, see file LICENSE in this source tree.
 */

#include "linux_module.h"
#include "linux_lzip.h"
#include "linux_mm.h"

/*
 * STATIC_RW_DATA is used in the pre-boot environment on some architectures.
 * See include/linux/decompress/mm.h for details.
 */
#ifndef STATIC_RW_DATA
#define STATIC_RW_DATA static
#endif

typedef int State;

enum { states = 12 };

static inline bool St_is_char(const State st) { return st < 7; }

static inline State St_set_char(const State st)
{
	STATIC_RW_DATA const State next[states] = { 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 4, 5 };
	return next[st];
}

static inline State St_set_match(const State st)
{
	return ((st < 7) ? 7 : 10);
}

static inline State St_set_rep(const State st)
{
	return ((st < 7) ? 8 : 11);
}

static inline State St_set_short_rep(const State st)
{
	return ((st < 7) ? 9 : 11);
}


enum {
	min_dictionary_bits = 12,
	min_dictionary_size = 1 << min_dictionary_bits,
	max_dictionary_bits = 29,
	max_dictionary_size = 1 << max_dictionary_bits,
	literal_context_bits = 3,
	pos_state_bits = 2,
	pos_states = 1 << pos_state_bits,
	pos_state_mask = pos_states - 1,

	len_states = 4,
	dis_slot_bits = 6,
	start_dis_model = 4,
	end_dis_model = 14,
	modeled_distances = 1 << (end_dis_model / 2),	/* 128 */
	dis_align_bits = 4,
	dis_align_size = 1 << dis_align_bits,

	len_low_bits = 3,
	len_mid_bits = 3,
	len_high_bits = 8,
	len_low_symbols = 1 << len_low_bits,
	len_mid_symbols = 1 << len_mid_bits,
	len_high_symbols = 1 << len_high_bits,
	max_len_symbols = len_low_symbols + len_mid_symbols + len_high_symbols,

	min_match_len = 2,					/* must be 2 */
	max_match_len = min_match_len + max_len_symbols - 1,	/* 273 */
	min_match_len_limit = 5
};

static inline int get_len_state(const int len)
{
	return min(len - min_match_len, len_states - 1);
}

static inline int get_lit_state(const uint8_t prev_byte)
{
	return (prev_byte >> (8 - literal_context_bits));
}


enum { bit_model_move_bits = 5,
	bit_model_total_bits = 11,
	bit_model_total = 1 << bit_model_total_bits
};

typedef int Bit_model;

static inline void Bm_init(Bit_model * const probability)
{
	*probability = bit_model_total / 2;
}

static inline void Bm_array_init(Bit_model bm[], const int size)
{
	int i;

	for (i = 0; i < size; ++i)
		Bm_init(&bm[i]);
}

struct Len_model {
	Bit_model choice1;
	Bit_model choice2;
	Bit_model bm_low[pos_states][len_low_symbols];
	Bit_model bm_mid[pos_states][len_mid_symbols];
	Bit_model bm_high[len_high_symbols];
};

static inline void Lm_init(struct Len_model * const lm)
{
	Bm_init(&lm->choice1);
	Bm_init(&lm->choice2);
	Bm_array_init(lm->bm_low[0], pos_states * len_low_symbols);
	Bm_array_init(lm->bm_mid[0], pos_states * len_mid_symbols);
	Bm_array_init(lm->bm_high, len_high_symbols);
}


/* Table of CRCs of all 8-bit messages. */
STATIC_RW_DATA const uint32_t crc32[256] =
  {
  0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA, 0x076DC419, 0x706AF48F,
  0xE963A535, 0x9E6495A3, 0x0EDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988,
  0x09B64C2B, 0x7EB17CBD, 0xE7B82D07, 0x90BF1D91, 0x1DB71064, 0x6AB020F2,
  0xF3B97148, 0x84BE41DE, 0x1ADAD47D, 0x6DDDE4EB, 0xF4D4B551, 0x83D385C7,
  0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC, 0x14015C4F, 0x63066CD9,
  0xFA0F3D63, 0x8D080DF5, 0x3B6E20C8, 0x4C69105E, 0xD56041E4, 0xA2677172,
  0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B, 0x35B5A8FA, 0x42B2986C,
  0xDBBBC9D6, 0xACBCF940, 0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59,
  0x26D930AC, 0x51DE003A, 0xC8D75180, 0xBFD06116, 0x21B4F4B5, 0x56B3C423,
  0xCFBA9599, 0xB8BDA50F, 0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924,
  0x2F6F7C87, 0x58684C11, 0xC1611DAB, 0xB6662D3D, 0x76DC4190, 0x01DB7106,
  0x98D220BC, 0xEFD5102A, 0x71B18589, 0x06B6B51F, 0x9FBFE4A5, 0xE8B8D433,
  0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818, 0x7F6A0DBB, 0x086D3D2D,
  0x91646C97, 0xE6635C01, 0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E,
  0x6C0695ED, 0x1B01A57B, 0x8208F4C1, 0xF50FC457, 0x65B0D9C6, 0x12B7E950,
  0x8BBEB8EA, 0xFCB9887C, 0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65,
  0x4DB26158, 0x3AB551CE, 0xA3BC0074, 0xD4BB30E2, 0x4ADFA541, 0x3DD895D7,
  0xA4D1C46D, 0xD3D6F4FB, 0x4369E96A, 0x346ED9FC, 0xAD678846, 0xDA60B8D0,
  0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9, 0x5005713C, 0x270241AA,
  0xBE0B1010, 0xC90C2086, 0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F,
  0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4, 0x59B33D17, 0x2EB40D81,
  0xB7BD5C3B, 0xC0BA6CAD, 0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A,
  0xEAD54739, 0x9DD277AF, 0x04DB2615, 0x73DC1683, 0xE3630B12, 0x94643B84,
  0x0D6D6A3E, 0x7A6A5AA8, 0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1,
  0xF00F9344, 0x8708A3D2, 0x1E01F268, 0x6906C2FE, 0xF762575D, 0x806567CB,
  0x196C3671, 0x6E6B06E7, 0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0x67DD4ACC,
  0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5, 0xD6D6A3E8, 0xA1D1937E,
  0x38D8C2C4, 0x4FDFF252, 0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B,
  0xD80D2BDA, 0xAF0A1B4C, 0x36034AF6, 0x41047A60, 0xDF60EFC3, 0xA867DF55,
  0x316E8EEF, 0x4669BE79, 0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236,
  0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F, 0xC5BA3BBE, 0xB2BD0B28,
  0x2BB45A92, 0x5CB36A04, 0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B, 0x5BDEAE1D,
  0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A, 0x9C0906A9, 0xEB0E363F,
  0x72076785, 0x05005713, 0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38,
  0x92D28E9B, 0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21, 0x86D3D2D4, 0xF1D4E242,
  0x68DDB3F8, 0x1FDA836E, 0x81BE16CD, 0xF6B9265B, 0x6FB077E1, 0x18B74777,
  0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C, 0x8F659EFF, 0xF862AE69,
  0x616BFFD3, 0x166CCF45, 0xA00AE278, 0xD70DD2EE, 0x4E048354, 0x3903B3C2,
  0xA7672661, 0xD06016F7, 0x4969474D, 0x3E6E77DB, 0xAED16A4A, 0xD9D65ADC,
  0x40DF0B66, 0x37D83BF0, 0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9,
  0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6, 0xBAD03605, 0xCDD70693,
  0x54DE5729, 0x23D967BF, 0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94,
  0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B, 0x2D02EF8D };


static inline void CRC32_update_buf(uint32_t * const crc,
					const uint8_t * const buffer,
					const long size)
{
	long i;
	uint32_t c = *crc;

	for (i = 0; i < size; ++i)
		c = crc32[(c^buffer[i])&0xFF] ^ (c >> 8);
	*crc = c;
}


STATIC_RW_DATA const uint8_t lzip_magic[4] = { 0x4C, 0x5A, 0x49, 0x50 }; /* "LZIP" */

typedef uint8_t Lzip_header[6];		/* 0-3 magic bytes */
					/*   4 version */
					/*   5 coded_dict_size */
enum { Lh_size = 6 };

static inline bool Lh_verify_magic(const Lzip_header data)
{
	int i;

	for (i = 0; i < 4; ++i)
		if (data[i] != lzip_magic[i])
			return false;
	return true;
}

/* detect (truncated) header */
static inline bool Lh_verify_prefix(const Lzip_header data, const int sz)
{
	int i;
	for (i = 0; i < sz && i < 4; ++i)
		if (data[i] != lzip_magic[i])
			return false;
	return (sz > 0);
}

/* detect corrupt header */
static inline bool Lh_verify_corrupt(const Lzip_header data)
{
	int matches = 0;
	int i;
	for (i = 0; i < 4; ++i)
		if (data[i] == lzip_magic[i])
			++matches;
	return (matches > 1 && matches < 4);
}

static inline bool Lh_verify_version(const Lzip_header data)
{
	return (data[4] == 1);
}

static inline unsigned Lh_get_dictionary_size(const Lzip_header data)
{
	unsigned sz = (1 << (data[5] & 0x1F));

	if (sz > min_dictionary_size)
		sz -= (sz / 16) * ((data[5] >> 5) & 7);
	return sz;
}


typedef uint8_t Lzip_trailer[20];
			/*  0-3  CRC32 of the uncompressed data */
			/*  4-11 size of the uncompressed data */
			/* 12-19 member size including header and trailer */
enum { Lt_size = 20 };

static inline unsigned Lt_get_data_crc(const Lzip_trailer data)
{
	unsigned tmp = 0;
	int i;

	for (i = 3; i >= 0; --i) {
		tmp <<= 8;
		tmp += data[i];
	}
	return tmp;
}

static inline unsigned long long Lt_get_data_size(const Lzip_trailer data)
{
	unsigned long long tmp = 0;
	int i;

	for (i = 11; i >= 4; --i) {
		tmp <<= 8;
		tmp += data[i];
	}
	return tmp;
}

static inline unsigned long long Lt_get_member_size(const Lzip_trailer data)
{
	unsigned long long tmp = 0;
	int i;

	for (i = 19; i >= 12; --i) {
		tmp <<= 8;
		tmp += data[i];
	}
	return tmp;
}


struct Range_decoder {
	unsigned long long partial_member_pos;
	uint8_t *buffer;	/* input buffer */
	long buffer_size;
	long pos;		/* current pos in buffer */
	long stream_pos;	/* when reached, a new block must be read */
	uint32_t code;
	uint32_t range;
	long (*fill)(void*, unsigned long);
	bool at_stream_end;
	bool buffer_given;
};


static bool Rd_read_block(struct Range_decoder * const rdec)
{
	if (!rdec->at_stream_end) {
		rdec->stream_pos = rdec->fill ?
			rdec->fill(rdec->buffer, rdec->buffer_size) : 0;
		rdec->at_stream_end = (rdec->stream_pos < rdec->buffer_size);
		rdec->partial_member_pos += rdec->pos;
		rdec->pos = 0;
	}
	return rdec->pos < rdec->stream_pos;
}


static inline bool Rd_init(struct Range_decoder * const rdec,
				uint8_t * const inbuf, const long in_len,
				long (*fill)(void*, unsigned long))
{
	rdec->partial_member_pos = 0;
	rdec->buffer_given = (inbuf && in_len > 0);
	rdec->buffer_size = rdec->buffer_given ? in_len : 16384;
	rdec->buffer = rdec->buffer_given ? inbuf : malloc(rdec->buffer_size);
	if (!rdec->buffer)
		return false;
	rdec->pos = 0;
	rdec->stream_pos = rdec->buffer_given ? in_len : 0;
	rdec->code = 0;
	rdec->range = 0xFFFFFFFFU;
	rdec->fill = fill;
	rdec->at_stream_end = false;
	return true;
}

static inline void Rd_free(struct Range_decoder * const rdec)
{
	if (!rdec->buffer_given)
		free(rdec->buffer);
}

static inline bool Rd_finished(struct Range_decoder * const rdec)
{
	return rdec->pos >= rdec->stream_pos && !Rd_read_block(rdec);
}

static inline unsigned long long
Rd_member_position(const struct Range_decoder * const rdec)
{
	return rdec->partial_member_pos + rdec->pos;
}

static inline void Rd_reset_member_position(struct Range_decoder * const rdec)
{
	rdec->partial_member_pos = 0; rdec->partial_member_pos -= rdec->pos;
}

static inline uint8_t Rd_get_byte(struct Range_decoder * const rdec)
{
	/* 0xFF avoids decoder error if member is truncated at EOS marker */
	if (Rd_finished(rdec))
		return 0xFF;
	return rdec->buffer[rdec->pos++];
}

static inline void Rd_load(struct Range_decoder * const rdec)
{
	int i;

	rdec->code = 0;
	for (i = 0; i < 5; ++i)
		rdec->code = (rdec->code << 8) | Rd_get_byte(rdec);
	rdec->range = 0xFFFFFFFFU;
}

static inline void Rd_normalize(struct Range_decoder * const rdec)
{
	if (rdec->range <= 0x00FFFFFFU) {
		rdec->range <<= 8;
		rdec->code = (rdec->code << 8) | Rd_get_byte(rdec);
	}
}

static inline unsigned Rd_decode(struct Range_decoder * const rdec,
				const int num_bits)
{
	unsigned symbol = 0;
	int i;

	for (i = num_bits; i > 0; --i) {
		bool bit;

		Rd_normalize(rdec);
		rdec->range >>= 1;
		/* symbol <<= 1; */
		/* if(rdec->code >= rdec->range) { rdec->code -= rdec->range; symbol |= 1; } */
		bit = (rdec->code >= rdec->range);
		symbol = (symbol << 1) + bit;
		rdec->code -= rdec->range & (0U - bit);
	}
	return symbol;
}

static inline unsigned Rd_decode_bit(struct Range_decoder * const rdec,
					Bit_model * const probability)
{
	uint32_t bound;

	Rd_normalize(rdec);
	bound = (rdec->range >> bit_model_total_bits) * *probability;
	if (rdec->code < bound) {
		rdec->range = bound;
		*probability += (bit_model_total - *probability) >> bit_model_move_bits;
		return 0;
	} else {
		rdec->range -= bound;
		rdec->code -= bound;
		*probability -= *probability >> bit_model_move_bits;
		return 1;
	}
}

static inline unsigned Rd_decode_tree3(struct Range_decoder * const rdec,
					Bit_model bm[])
{
	unsigned symbol = 1;

	symbol = (symbol << 1) | Rd_decode_bit(rdec, &bm[symbol]);
	symbol = (symbol << 1) | Rd_decode_bit(rdec, &bm[symbol]);
	symbol = (symbol << 1) | Rd_decode_bit(rdec, &bm[symbol]);
	return symbol & 7;
}

static inline unsigned Rd_decode_tree6(struct Range_decoder * const rdec,
					Bit_model bm[])
{
	unsigned symbol = 1;

	symbol = (symbol << 1) | Rd_decode_bit(rdec, &bm[symbol]);
	symbol = (symbol << 1) | Rd_decode_bit(rdec, &bm[symbol]);
	symbol = (symbol << 1) | Rd_decode_bit(rdec, &bm[symbol]);
	symbol = (symbol << 1) | Rd_decode_bit(rdec, &bm[symbol]);
	symbol = (symbol << 1) | Rd_decode_bit(rdec, &bm[symbol]);
	symbol = (symbol << 1) | Rd_decode_bit(rdec, &bm[symbol]);
	return symbol & 0x3F;
}

static inline unsigned Rd_decode_tree8(struct Range_decoder * const rdec,
					Bit_model bm[])
{
	unsigned symbol = 1;
	int i;

	for (i = 0; i < 8; ++i)
		symbol = (symbol << 1) | Rd_decode_bit(rdec, &bm[symbol]);
	return symbol & 0xFF;
}

static inline unsigned
Rd_decode_tree_reversed(struct Range_decoder * const rdec,
			Bit_model bm[], const int num_bits)
{
	unsigned model = 1;
	unsigned symbol = 0;
	int i;

	for (i = 0; i < num_bits; ++i) {
		const unsigned bit = Rd_decode_bit(rdec, &bm[model]);

		model = (model << 1) + bit;
		symbol |= (bit << i);
	}
	return symbol;
}

static inline unsigned
Rd_decode_tree_reversed4(struct Range_decoder * const rdec, Bit_model bm[])
{
	unsigned symbol = Rd_decode_bit(rdec, &bm[1]);
	unsigned model = 2 + symbol;
	unsigned bit = Rd_decode_bit(rdec, &bm[model]);

	model = (model << 1) + bit; symbol |= (bit << 1);
	bit = Rd_decode_bit(rdec, &bm[model]);
	model = (model << 1) + bit; symbol |= (bit << 2);
	symbol |= (Rd_decode_bit(rdec, &bm[model]) << 3);
	return symbol;
}

static inline unsigned Rd_decode_matched(struct Range_decoder * const rdec,
					Bit_model bm[], unsigned match_byte)
{
	unsigned symbol = 1;
	unsigned mask = 0x100;

	while (true) {
		const unsigned match_bit = (match_byte <<= 1) & mask;
		const unsigned bit = Rd_decode_bit(rdec, &bm[symbol+match_bit+mask]);

		symbol = (symbol << 1) + bit;
		if (symbol > 0xFF)
			return symbol & 0xFF;
		mask &= ~(match_bit ^ (bit << 8));	/* if( match_bit != bit ) mask = 0; */
	}
}

static inline unsigned Rd_decode_len(struct Range_decoder * const rdec,
						struct Len_model * const lm,
						const int pos_state)
{
	if (Rd_decode_bit(rdec, &lm->choice1) == 0)
		return Rd_decode_tree3(rdec, lm->bm_low[pos_state]);
	if (Rd_decode_bit(rdec, &lm->choice2) == 0)
		return len_low_symbols +
			Rd_decode_tree3(rdec, lm->bm_mid[pos_state]);
	return len_low_symbols + len_mid_symbols +
		Rd_decode_tree8(rdec, lm->bm_high);
}


struct LZ_decoder {
	unsigned long long partial_data_pos;
	struct Range_decoder *rdec;
	/* Don't move bm_* to LZd_decode_member; makes frame too large. */
	Bit_model bm_literal[1 << literal_context_bits][0x300];
	Bit_model bm_match[states][pos_states];
	Bit_model bm_rep[states];
	Bit_model bm_rep0[states];
	Bit_model bm_rep1[states];
	Bit_model bm_rep2[states];
	Bit_model bm_len[states][pos_states];
	Bit_model bm_dis_slot[len_states][1 << dis_slot_bits];
	Bit_model bm_dis[modeled_distances-end_dis_model+1];
	Bit_model bm_align[dis_align_size];
	struct Len_model match_len_model;
	struct Len_model rep_len_model;

	unsigned long buffer_size;
	unsigned dictionary_size;
	uint8_t *buffer;	/* output buffer */
	unsigned long pos;	/* current pos in buffer */
	unsigned long stream_pos;	/* first byte not yet written to file */
	uint32_t crc;
	long (*flush)(void*, unsigned long);
	bool pos_wrapped;
	bool buffer_given;
	bool write_error;
};

static void LZd_flush_data(struct LZ_decoder * const d)
{
	if (d->pos > d->stream_pos) {
		const long size = d->pos - d->stream_pos;

		CRC32_update_buf(&d->crc, d->buffer + d->stream_pos, size);
		if ((d->flush &&
		     d->flush(d->buffer + d->stream_pos, size) != size) ||
		    (!d->flush && d->pos_wrapped))
			d->write_error = true;
		if (d->pos >= d->buffer_size) {
			d->partial_data_pos += d->pos;
			d->pos = 0;
			d->pos_wrapped = true;
		}
		d->stream_pos = d->pos;
	}
}

static inline uint8_t LZd_peek_prev(const struct LZ_decoder * const d)
{
	if (d->pos > 0)
		return d->buffer[d->pos-1];
	if (d->pos_wrapped)
		return d->buffer[d->buffer_size-1];
	return 0;			/* prev_byte of first byte */
}

static inline uint8_t LZd_peek(const struct LZ_decoder * const d,
				const unsigned distance)
{
	const unsigned long i = ((d->pos > distance) ? 0 : d->buffer_size) +
				d->pos - distance - 1;
	return d->buffer[i];
}

static inline void LZd_put_byte(struct LZ_decoder * const d, const uint8_t b)
{
	d->buffer[d->pos] = b;
	if (++d->pos >= d->buffer_size)
		LZd_flush_data(d);
}

static inline void LZd_copy_block(struct LZ_decoder * const d,
				const unsigned distance, unsigned len)
{
	unsigned long lpos = d->pos, i = lpos - distance - 1;
	bool fast, fast2;

	if (lpos > distance) {
		fast = (len < d->buffer_size - lpos);
		fast2 = (fast && len <= lpos - i);
	} else {
		i += d->buffer_size;
		fast = (len < d->buffer_size - i);	/* (i == pos) may happen */
		fast2 = (fast && len <= i - lpos);
	}
	if (fast) {				/* no wrap */
		d->pos += len;
		if (fast2)			/* no wrap, no overlap */
			memcpy(d->buffer + lpos, d->buffer + i, len);
		else
			for (; len > 0; --len)
				d->buffer[lpos++] = d->buffer[i++];
	} else
		for (; len > 0; --len) {
			d->buffer[d->pos] = d->buffer[i];
			if (++d->pos >= d->buffer_size)
				LZd_flush_data(d);
			if (++i >= d->buffer_size)
				i = 0;
		}
}

static inline bool LZd_init(struct LZ_decoder * const d,
			struct Range_decoder * const rde,
			const unsigned dict_size, uint8_t * const outbuf,
			long out_size, long (*flush)(void*, unsigned long))
{
	d->partial_data_pos = 0;
	d->rdec = rde;
	Bm_array_init(d->bm_literal[0], (1 << literal_context_bits) * 0x300);
	Bm_array_init(d->bm_match[0], states * pos_states);
	Bm_array_init(d->bm_rep, states);
	Bm_array_init(d->bm_rep0, states);
	Bm_array_init(d->bm_rep1, states);
	Bm_array_init(d->bm_rep2, states);
	Bm_array_init(d->bm_len[0], states * pos_states);
	Bm_array_init(d->bm_dis_slot[0], len_states * (1 << dis_slot_bits));
	Bm_array_init(d->bm_dis, modeled_distances - end_dis_model + 1);
	Bm_array_init(d->bm_align, dis_align_size);
	Lm_init(&d->match_len_model);
	Lm_init(&d->rep_len_model);

	d->buffer_given = (outbuf && out_size > 0);
	d->buffer_size = d->buffer_given ? (unsigned long)out_size : dict_size;
	d->dictionary_size = min_t(unsigned long, d->buffer_size, dict_size);
	d->buffer = d->buffer_given ? outbuf : large_malloc(d->buffer_size);
	if (!d->buffer)
		return false;
	d->pos = 0;
	d->stream_pos = 0;
	d->crc = 0xFFFFFFFFU;
	d->flush = flush;
	d->pos_wrapped = false;
	d->write_error = false;
	/* prev_byte of first byte; also for LZd_peek( 0 ) on corrupt file */
	if (!d->buffer_given)		/* inbuf and outbuf may overlap */
		d->buffer[d->buffer_size-1] = 0;
	return true;
}

static inline void LZd_free(struct LZ_decoder * const d)
{
	if (!d->buffer_given)
		large_free(d->buffer);
}

static inline unsigned LZd_crc(const struct LZ_decoder * const d)
{
	return d->crc ^ 0xFFFFFFFFU;
}

static inline unsigned long long
LZd_data_position(const struct LZ_decoder * const d)
{
	return d->partial_data_pos + d->pos;
}


static bool LZd_verify_trailer(struct LZ_decoder * const d)
{
	Lzip_trailer trailer;
	int i = 0;

	while (i < Lt_size)
		trailer[i++] = Rd_get_byte(d->rdec);

	return (Lt_get_data_crc(trailer) == LZd_crc(d) &&
		Lt_get_data_size(trailer) == LZd_data_position(d) &&
		Lt_get_member_size(trailer) == Rd_member_position(d->rdec));
}


/* Return value: 0 = OK, < 0 = error (see include/linux/lzip.h). */
static int LZd_decode_member(struct LZ_decoder * const d)
{
	struct Range_decoder * const rdec = d->rdec;
	unsigned rep0 = 0;	/* rep[0-3] latest four distances */
	unsigned rep1 = 0;	/* used for efficient coding of */
	unsigned rep2 = 0;	/* repeated distances */
	unsigned rep3 = 0;
	State state = 0;

	Rd_load(rdec);
	while (!Rd_finished(rdec)) {
		int len;
		const int pos_state = LZd_data_position(d) & pos_state_mask;

		if (Rd_decode_bit(rdec, &d->bm_match[state][pos_state]) == 0) {
			/* literal byte */
			Bit_model * const bm = d->bm_literal[get_lit_state(LZd_peek_prev(d))];

			if (St_is_char(state)) {
				state -= (state < 4) ? state : 3;
				LZd_put_byte(d, Rd_decode_tree8(rdec, bm));
			} else {
				state -= (state < 10) ? 3 : 6;
				LZd_put_byte(d, Rd_decode_matched(rdec, bm, LZd_peek(d, rep0)));
			}
		continue;
		}
		/* match or repeated match */
		if (Rd_decode_bit(rdec, &d->bm_rep[state]) != 0) {
			if (Rd_decode_bit(rdec, &d->bm_rep0[state]) == 0) {
				if (Rd_decode_bit(rdec, &d->bm_len[state][pos_state]) == 0) {
					state = St_set_short_rep(state);
					LZd_put_byte(d, LZd_peek(d, rep0));
					continue;
				}
			} else {
				unsigned distance;

				if (Rd_decode_bit(rdec, &d->bm_rep1[state]) == 0)
					distance = rep1;
				else {
					if (Rd_decode_bit(rdec, &d->bm_rep2[state]) == 0)
						distance = rep2;
					else {
						distance = rep3;
						rep3 = rep2;
					}
					rep2 = rep1;
				}
				rep1 = rep0;
				rep0 = distance;
			}
			state = St_set_rep(state);
			len = min_match_len + Rd_decode_len(rdec, &d->rep_len_model, pos_state);
		} else {			/* match */
			unsigned distance;

			len = min_match_len + Rd_decode_len(rdec, &d->match_len_model, pos_state);
			distance = Rd_decode_tree6(rdec, d->bm_dis_slot[get_len_state(len)]);
			if (distance >= start_dis_model) {
				const unsigned dis_slot = distance;
				const int direct_bits = (dis_slot >> 1) - 1;

				distance = (2 | (dis_slot & 1)) << direct_bits;
				if (dis_slot < end_dis_model)
					distance += Rd_decode_tree_reversed(rdec,
						d->bm_dis + (distance - dis_slot), direct_bits);
				else {
					distance +=
					  Rd_decode(rdec, direct_bits - dis_align_bits) << dis_align_bits;
					distance += Rd_decode_tree_reversed4(rdec, d->bm_align);
					if (distance == 0xFFFFFFFFU) {	/* marker found */
						Rd_normalize(rdec);
						LZd_flush_data(d);
						if (d->write_error)
							return LZIP_WRITE_ERROR;
						if (len == min_match_len) {	/* End Of Stream marker */
							if (LZd_verify_trailer(d))
								return 0;
							else
								return LZIP_BAD_CRC;
						}
						if (len == min_match_len + 1) {	/* Sync Flush marker */
							Rd_load(rdec);
							continue;
						}
						return LZIP_BAD_DATA;	/* unknown marker */
					}
				}
			}
			rep3 = rep2; rep2 = rep1; rep1 = rep0; rep0 = distance;
			state = St_set_match(state);
			if (rep0 >= d->dictionary_size ||
			   (rep0 >= d->pos && !d->pos_wrapped)) {
				LZd_flush_data(d);
				return LZIP_BAD_DATA;
			}
		}
		LZd_copy_block(d, rep0, len);
	}
	LZd_flush_data(d);
	return LZIP_DATA_EOF;
}


int lzip_decompress(unsigned char *inbuf, long in_len,
			long (*fill)(void*, unsigned long),
			long (*flush)(void*, unsigned long),
			unsigned char *outbuf, long out_size,
			long *in_posp, long *out_posp)
{
	unsigned char *outptr = outbuf;
	struct Range_decoder rdec;
	struct LZ_decoder *decoder = 0;
	int retval = 0;
	bool first_member;

	if (in_posp)
		*in_posp = 0;
	if (out_posp)
		*out_posp = 0;

	if (!Rd_init(&rdec, inbuf, in_len, fill))
		return LZIP_OOM_INBUF;

	for (first_member = true;; first_member = false) {
		long data_pos;
		int size;
		unsigned dictionary_size;
		Lzip_header header;

		Rd_reset_member_position(&rdec);
		for (size = 0; size < Lh_size && !Rd_finished(&rdec); ++size)
			header[size] = Rd_get_byte(&rdec);
		if (Rd_finished(&rdec)) {	/* End Of File */
			if (first_member)
				retval = LZIP_HEADER1_EOF;
			else if (Lh_verify_prefix(header, size))
				retval = LZIP_HEADER2_EOF;
			break;
		}
		if (!Lh_verify_magic(header)) {
			if (first_member)
				retval = LZIP_BAD_MAGIC1;
			else if (Lh_verify_corrupt(header))
				retval = LZIP_BAD_MAGIC2;
			break;
		}
		if (!Lh_verify_version(header)) {
			retval = LZIP_BAD_VERSION;
			break;
		}
		dictionary_size = Lh_get_dictionary_size(header);
		if (dictionary_size < min_dictionary_size ||
		    dictionary_size > max_dictionary_size) {
			retval = LZIP_BAD_DICT_SIZE;
			break;
		}

		if (!decoder)
			decoder = malloc(sizeof *decoder);
		if (!decoder || !LZd_init(decoder, &rdec, dictionary_size,
					outptr, out_size, flush)) {
			retval = LZIP_OOM_OUTBUF;
			break;
		}
		retval = LZd_decode_member(decoder);
		if (in_posp)
			*in_posp += Rd_member_position(&rdec);
		data_pos = LZd_data_position(decoder);
		if (outptr)
			outptr += data_pos;
		if (out_posp)
			*out_posp += data_pos;
		if (out_size > 0)
			out_size -= data_pos;
		LZd_free(decoder);
		if (retval != 0)
			break;
	}
	if (decoder)
		free(decoder);
	Rd_free(&rdec);
	return retval;
}

#ifndef STATIC
EXPORT_SYMBOL_GPL(lzip_decompress);
#endif
MODULE_DESCRIPTION("LZIP Decompressor");
MODULE_AUTHOR("Antonio Diaz Diaz <antonio@gnu.org>");
MODULE_LICENSE("GPL");