File: moreExamples.tex

package info (click to toggle)
xmds-doc 0~svn.1884-3.1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd, wheezy
  • size: 8,336 kB
  • ctags: 192
  • sloc: makefile: 135; python: 55
file content (1190 lines) | stat: -rw-r--r-- 40,130 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
% $Id: moreExamples.tex 1641 2008-01-10 02:55:05Z joehope $

% Copyright (C) 2000-2007
%
% Code contributed by Greg Collecutt, Joseph Hope and the xmds-devel team
%
% This file is part of xmds.
%
% This program is free software; you can redistribute it and/or
% modify it under the terms of the GNU General Public License
% as published by the Free Software Foundation; either version 2
% of the License, or (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software 
% Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.

\chapter{More Examples} 
\label{chap:moreExamples}

\section{ndparamp.xmds} 
\label{sec:ndparamp}

\begin{xmdsCode}
<?xml version="1.0"?>
<!--Non-Degenerate Parametric Amplifier-->
<!--Simulton formation for logical switching-->

<simulation>

  <name>ndparamp</name>
  <prop_dim>z</prop_dim>
  <error_check>yes</error_check>

  <globals>
    <![CDATA[
      const double e1 =350;
      const double e2 =350;
      const double r1 = 1;
      const double r2 = 1;
      const double vy1 =  0.5;
      const double vy2 = -0.5;
      const double yc1 = -0.2;
      const double yc2 =  0.2;
      const double tc1 = 0;
      const double tc2 = 0;

      double amp1=sqrt(e1/2/M_PI/r1/r1);
      double amp2=sqrt(e2/2/M_PI/r2/r2);
    ]]>
  </globals>

  <field>
    <name>main</name>
    <dimensions>   y       t     </dimensions>
    <lattice>     100     100    </lattice>
    <domains>  (-10,10) (-10,10) </domains>
    <samples>1 1</samples>

    <vector>
      <name>main</name>
      <type>complex</type>
      <components>ff1 ff2 sh</components>
      <fourier_space>no no</fourier_space>
      <![CDATA[
        ff1 = pcomplex(amp1*exp(-pow((y - yc1)/r1/2,2)
                        -pow((t - tc1)/r1/2,2)),+vy1*y);
        ff2 = pcomplex(amp2*exp(-pow((y - yc2)/r2/2,2)
                        -pow((t - tc2)/r2/2,2)),+vy2*y);
        sh  = rcomplex(0,0);
      ]]>
    </vector>

    <vector>
      <name>vc1</name>
      <type>double</type>
      <components>damping</components>
      <fourier_space>no no</fourier_space>
      <![CDATA[
        damping=1.0*(1-exp(-pow((y*y + t*t)/8/8,10)));
      ]]>
    </vector>
  </field>

  <sequence>
    <integrate>
      <algorithm>RK4IP</algorithm>
      <interval>10</interval>
      <lattice>500</lattice>
      <samples>50 50</samples>
      <k_operators>
        <constant>yes</constant>
        <operator_names>Lap1 Lap2</operator_names>
        <![CDATA[
          Lap1 = i*(-(ky*ky + kt*kt) - 1);
          Lap2 = i*(-(ky*ky + kt*kt)/2 - 1);
        ]]>
      </k_operators>
      <vectors>main vc1</vectors>
        <![CDATA[
          dff1_dz = Lap1[ff1] + i*~ff2*sh  - damping*ff1;
          dff2_dz = Lap1[ff2] + i*~ff1*sh  - damping*ff2;
          dsh_dz  = Lap2[sh]  + i* ff1*ff2 - damping* sh;
        ]]>
    </integrate>
  </sequence>

  <output>

    <group>
      <sampling>
        <fourier_space> no  no </fourier_space>
        <lattice>       50  0  </lattice>
        <moments>pow_dens</moments>
        <![CDATA[
          pow_dens = ~ff1*ff1 + ~ff2*ff2 + 2*~sh*sh;
        ]]>
      </sampling>
    </group>

    <group>
      <sampling>
        <fourier_space> no  no </fourier_space>
        <lattice>       0  0  </lattice>
        <moments>etot</moments>
        <![CDATA[
          etot = ~ff1*ff1 + ~ff2*ff2 + 2*~sh*sh;
        ]]>
      </sampling>
    </group>
  </output>
</simulation>
\end{xmdsCode}

This simulation describes how to solve for the evolution of three
bosonic fields governed by a non-degenerate parametric interaction, as
described in Equations~(\ref{eq:TIIa}) and~(\ref{eq:TIIb}). Perhaps
not surprisingly, the majority of the above script is to generate the
particular initialisation conditions and to define a number of output
moments---the portion concerned with actually implementing these
equations is not that great.
\begin{equation}
  \frac{\partial \phi _{j}}{\partial \xi } =i\left[ \left(
    \frac{\partial ^{2}}{\partial \tau ^{2}} + \frac{\partial
      ^{2}}{\partial \zeta ^{2}} + i\Gamma (\tau ,\zeta )-1\right) \phi
    _{j}+\phi ^{*}_{3-j} \phi _{3}\right], \quad j=1,2;
  \label{eq:TIIa}
\end{equation}
\begin{equation}
  \frac{\partial \phi _{3}}{\partial \xi } = i\left[ \left(
    \frac{1}{\sigma}\frac{\partial ^{2}}{\partial \tau ^{2}} +
    \frac{1}{2}\frac{\partial ^{2}}{\partial \zeta ^{2}} +i\Gamma (\tau
    ,\zeta )- \gamma \right) \phi _{3}+\phi _{1}\phi _{2}\right].
  \label{eq:TIIb}
\end{equation}

The main difference between this simulation and the \ttt{nlse.xmds}
simulation is that it now has a three component field which has two
transverse dimensions. Also two moment groups are being evaluated, one
being integrated over the ``\ttt{t}'' dimension, and the other
integrated over both transverse dimensions.
\begin{figure}[ht]
\centerline{%
\begin{tabular}{cc}
\includegraphics[width=\figwidth]{figures/ndparamp1} &
\includegraphics[width=\figwidth]{figures/ndparamp2}\\ a) Time
integrated intensity & b) Total energy (vs z)
\end{tabular}%
}
\caption{Results for ndparamp.xmds}
\label{fig:ndparamp}
\end{figure}

\section{kubo.xmds} 
\label{sec:kubo.xmds}

\begin{xmdsCode}
<?xml version="1.0"?>
<!--Example Kubo oscillator simulation-->

<simulation>

  <name>kubo</name>
  <prop_dim>t</prop_dim>
  <error_check>yes</error_check>
  <stochastic>yes</stochastic>
  <paths>1</paths>
  <use_mpi>no</use_mpi>
  <seed>1 2</seed>
  <noises>1</noises>
   
  <field>
    <samples>1</samples>
    <vector>
      <name>main</name>
      <type>complex</type>
      <components>z</components>
      <![CDATA[
        z = 1;
      ]]>
    </vector>
  </field>

  <sequence>
    <integrate>
      <algorithm>SIEX</algorithm>
      <interval>10</interval>
      <lattice>1000</lattice>
      <samples>100</samples>
      <iterations>3</iterations>
      <![CDATA[
        dz_dt = i*z*n_1;
      ]]>
    </integrate>

  </sequence>

  <output>
    <group>
      <sampling>
      <moments>realz</moments>
      <![CDATA[
	realz = z;
      ]]>
      </sampling>
    </group>
  </output>
</simulation>
\end{xmdsCode}

The kubo oscillator is described in \eqn{eq:kubo}, in which
the argument of the complex vector {\em z} is ``blown'' about by a
(real) Gaussian noise term, $\xi(t)$. This is a simple stochastic ODE.
\begin{equation}
\frac{\partial z}{\partial t } = i \xi(t) z.
\label{eq:kubo}
\end{equation}
Such Gaussian noise terms, in analytic form, are correlated in time
and space through Dirac delta functions, as shown in \eqn{eq:noiseDirac}.
\begin{equation}
\left< \xi_{i}(\vect{x})\xi_{j}(\vect{x'}) \right> = \delta_{i,j}
\Pi_{i=0}^{N} \delta(x^i-x'^i).
\label{eq:noiseDirac}
\end{equation}
However, when solving stochastic DEs numerically, algorithms work with
discrete time intervals and lattice spacings. Therefore these Dirac
delta correlations must be transformed to Kronecker delta correlations
using the integration time step and the spatial volume of the lattice,
as shown in \eqn{eq:noiseKronecker}:
\begin{equation}
\left< \xi_{i}(\vect{x})\xi_{j}(\vect{x'}) \right>
  = \frac{\delta_{i,j} \Pi_{i=0}^{N} \delta_{x^i,x'^i}}{\Pi_{i=0}^{N}
  \Delta x^i}.
\label{eq:noiseKronecker}
\end{equation}

The good news is that \xmds calculates this for the user---all that
has to be done is to specify, as a simple \xmdsTag{noises} assignment
within the \xmdsTag{simulation} element, the maximum number of noise
terms required in any one segment, and then reference them as
\ttt{n\_1}, \ttt{n\_2}, etc. as can be seen in this example. These noises are
available within the initialisation code for each field
\xmdsTag{vector}, within the main integration equations code (not in
the \xmdsTag{k\_operators} code), and in the code for any
\xmdsTag{filter} segments. Within the initialisation code and
\xmdsTag{filter} code the variances of the noises are determined by the
lattice cell volume product for the particular \xmdsTag{fourier\_space}
specification as shown in \eqn{eq:var}:
\begin{equation}
\left< n_{i}n_{j} \right> = \frac{\delta_{i,j}}{\Pi \Delta k^{m} \Pi
\Delta x^{n} },
\label{eq:var}
\end{equation}
where $m$ are the transverse dimensions in Fourier space and $n$ the
transverse dimensions in normal space. Also note that
\begin{equation}
\Delta k^i = \frac{2\pi}{x^i_{max} - x^i_{min}}.
\end{equation}

Within the main integration equations the variances must also reflect
the integration step size, as given by \eqn{eq:var_x-space}:
\begin{equation}
\left< n_{i}n_{j} \right> = \frac{\delta_{i,j}}{\Pi_{i=0}^{N} \Delta
x^i}.
\label{eq:var_x-space}
\end{equation}
\xmds uses the Box-Mueller technique, as shown in
\eqn{eq:box-mueller}, which generates a pair of Gaussian noises,
$\xi_1$ and $\xi_2$, from a pair of random numbers, $x_1$ and $x_2$,
that have a uniform distribution between zero and one.
\begin{equation}
  \xi_1 + i\xi_2 = \left[-2\Delta ln(x_1)\right]^\frac{1}{2} e^{i2\pi
    x_2} \; ; \; \mathcal P(x_i<y) = y \; ; \; y: 0 < y \leq 1;y\epsilon
  \mathcal R.
\label{eq:box-mueller}
\end{equation}

Estimating the error between full and half step sizes now poses an
interesting problem, since both evolutions must use the same
underlying noise (which is a function of both space and time) if the
difference between these paths is to be meaningful. The random number
generator must be reset before each of these integrations, but how is
the noise in the half-step case appropriated?  There are two
methods. The first is to use the same noise for both half-steps as is
used for the one whole step. This is undesirable since it makes sense
to use the half-step integration results (being the more accurate) for
the final output, and therefore independent noises must be used for
each step. So, the second solution is to do just this, and use the
average of the two noises when calculating the full-step
integration. Now, suppose the problem uses $N$ noises and has a
transverse lattice of $M$ points.  Within the SIEX, RK4IP, and the RK4EX
integration algorithms the main field vector is swept through severals
times in the course of each time step, thus a $M \times N$ vector of
noise must be calculated at the beginning of the time step and
referenced during the calculation of the main field vector's
derivatives. In the full-step case two such vectors are calculated,
and then averaged to provide the equivalent full-step noise. However,
the SIIP algorithm only sweeps though the main field vector once for
each time step, and so only $N$ noises need be calculated at a time
(thus saving on memory and RAM access), provided {\em two} independent
random number generators are used: the first generator is used for the
first half step, the second for the second half step, and the average
of both is used for the full step. In C this is done with the {\em
erand48(n)} function which uses the 48-bit integer $n$ to generate the
next random number, advancing $n$ to the next in sequence in the
process. The states of the two independent generators are simply two
independent integers, $n_1$ and $n_2$. The user supplies the initial
values for these integers in the \xmdsTag{seed} assignment.

Stochastic problems are very well suited to parallel computer
architectures, as different paths can run on different processors, and
do not have to transfer information until the integration is
complete. Multiple path stochastic problems such as this may be
parallised using MPI routines. If an MPI compiler was specified in the
configuration step of installation (this will often be \ttt{mpicc}),
then all that needs to be done is to toggle the optional
\xmdsTag{use\_mpi} assignment to \ttt{yes}. \xmds will then place the
appropriate MPI calls in the output code and compile it with the MPI
compiler. The executable should then be run through the MPI execution
handler (probably \ttt{mpirun}), with the number of processors option
supplied. For example if 16 processors are available then the final
command for execution would be
\begin{shellCode}
% mpirun -np 16 kubo
\end{shellCode}
Note that whole paths are assigned independently to the processors, so
there is no benefit in specifying more processors than there are paths
in the simulation. It is not necessary for the number of processors to
be a factor of the number of paths, some processors will simply do one
more paths than others.

Also note that for both of the semi-implicit algorithms, SIEX and
SIIP, an \xmdsTag{iterations} assignment may be used within the
\xmdsTag{integrate} element to specify the number of iterations to use
in the method (refer Sections~\ref{sec:siMethod},
\ref{sec:siexMethod}, and~\ref{sec:siipMethod}). This assignment is
optional, and will default to three when absent.

The reason that the kubo oscillator is used as an example is that it
has an analytic solution, as shown in \eqn{eq:kuboSolution}.
\fig{fig:kubo} shows the results for a single trajectory and an
averaged trajectory, illustrating the expected behaviour.
\begin{equation} 
\left< z(t) \right> = z_0 e^{-\frac{t}{2}}.
\label{eq:kuboSolution}
\end{equation}

\begin{figure}[ht]
\centerline{%
\begin{tabular}{cc}
\includegraphics[width=\figwidth]{figures/kubo1} &
\includegraphics[width=\figwidth]{figures/kubo2}\\ a) Single path & b)
1024 path mean
\end{tabular}%
}
\caption{Results for kubo.xmds}
\label{fig:kubo}
\end{figure}

Since the variance of the noise terms scale with the inverse of the
integration step size, the integration method suffers a loss of order
with regard to error vs step size. While this is normally a second
order method for non-stochastic problems, it becomes a first order
method for problems with noise, as was explained in
\Sec{sec:eulerMethods}.

\section{fibre.xmds} 
\label{sec:fibre.xmds}

\begin{xmdsCode}
<?xml version="1.0"?>
<!--Example fibre noise simulation-->

<simulation>

  <name>fibre</name>
  <prop_dim>t</prop_dim>
  <error_check>yes</error_check>
  <stochastic>yes</stochastic>
  <use_mpi>no</use_mpi>
  <paths>1</paths>
  <seed>1 2</seed>
  <noises>2</noises>

  <globals>
<![CDATA[
const double ggamma = 1;
const double beta = sqrt(2*2*M_PI*ggamma/10);
]]>
  </globals>

  <field>
    <name>main</name>
    <dimensions>   x   </dimensions>
    <lattice>     50  </lattice>
    <domains>  (-5,5)  </domains>
    <samples>1</samples>

    <vector>
      <name>main</name>
      <type>complex</type>
      <components>phi</components>
      <fourier_space>no</fourier_space>
<![CDATA[
phi=0;
]]>
    </vector>
  </field>

  <sequence>
    <integrate>
      <algorithm>SIIP</algorithm>
      <interval>2.5</interval>
      <lattice>5000</lattice>
      <samples>50</samples>
      <k_operators>
        <constant>yes</constant>
        <operator_names>L</operator_names>
<![CDATA[
L = i*(-kx*kx);
]]>
      </k_operators>
      <iterations>3</iterations>
<![CDATA[
dphi_dt = L[phi] - ggamma*phi + beta/sqrt(2)*complex(n_1,n_2);
]]>
    </integrate>
  </sequence>

  <output>
    <group>
      <sampling>
      <fourier_space> yes </fourier_space>
      <lattice>       50  </lattice>
      <moments>pow_dens</moments>
<![CDATA[
pow_dens = conj(phi)*phi;
]]>
      </sampling>
    </group>
  </output>
</simulation>
\end{xmdsCode}

This simulation solves \eqn{eq:fibre}, in which a one dimensional
damped field is subject to a complex noise. This is a stochastic PDE.
\begin{equation}
\frac{\partial \psi}{\partial t } = -i \frac{\partial^{2}
 \psi}{\partial x^{2}} - \gamma \psi + \frac{\beta}{\sqrt{2}}
 (\xi_1(x,t) + i\xi_2(x,t)).
\label{eq:fibre}
\end{equation}

Again the reason for using this as an example of a stochastic PDE is
that it has an analytic solution, as shown in \eqn{eq:fibreSolution}.
\fig{fig:fibre} displays the results of this simulation in Fourier
space for a single trajectory and an averaged trajectory, which appear
as expected.
\begin{equation} 
\left< | \psi (k,t) |^{2} \right> = e^{-2 \gamma t} |\psi_0 (k)|^{2} +
\frac{\beta^{2}L_{x}}{4 \pi \gamma} (1-e^{-2 \gamma t}),
\label{eq:fibreSolution}
\end{equation}
where $L_{x}$ is the length of the $x$ domain.
\begin{figure}[ht]
\centerline{%
\begin{tabular}{cc}
\includegraphics[width=\figwidth]{figures/fibre1} &
\includegraphics[width=\figwidth]{figures/fibre2}\\ a) Single path &
b) 1024 path mean
\end{tabular}
}%
\caption{Results for fibre.xmds}
\label{fig:fibre}
\end{figure}

One important issue here is that the variance of the noise terms now
scales with the product of the number of lattice points (for a given
domain). Hence changing to a finer lattice actually increases the
single trajectory error, and the relationship between the error and
the lattice product will depend on the order of the spatial
derivatives. The only way to overcome this is to reduce the
integration step size, which added to the fact that there are more
lattice points in the first place, means that fine lattice resolution
in a stochastic PDE is computationally {\em very} expensive.

\section{tla.xmds} 
\label{sec:tla.xmds}

\begin{xmdsCode}
<?xml version="1.0"?>
<!--Two Level Atom Example simulation to illustrate a
cross propagating field-->

<simulation>

  <prop_dim> z </prop_dim>

  <globals>
    <![CDATA[
      const double g  = 1;
      const double t0 = 1;
    ]]>
  </globals>

  <field>
    <dimensions>   t    </dimensions>
    <lattice>     100   </lattice>
    <domains> (-10, 15) </domains>
    <samples> 1 0 </samples>

    <vector>
      <name> main </name>
      <type> double </type>
      <components> E </components>
      <![CDATA[
        E = 2/t0/cosh(t/t0);
      ]]>
    </vector>

    <vector>
      <name> cross </name>
      <type> double </type>
      <components> P N </components>
      <![CDATA[
          P =  0;
          N = -1;
      ]]>
    </vector>
  </field>

  <sequence>
    <integrate>
      <algorithm> RK4EX </algorithm>
      <interval> 4 </interval>
      <lattice> 50 </lattice>
      <samples> 50 50 </samples>
      <vectors> main cross </vectors>
        <![CDATA[
          dE_dz =  g*P;
        ]]>
      <cross_propagation>
        <vectors> cross </vectors>
        <prop_dim> t </prop_dim>
        <![CDATA[
          dP_dt =  E*N;
          dN_dt = -E*P;
        ]]>
      </cross_propagation>
    </integrate>
  </sequence>

  <output>

    <group>
      <sampling>
        <lattice> 50 </lattice>
        <moments> pow_dens </moments>
        <![CDATA[
          pow_dens = E*E;
        ]]>
      </sampling>
    </group>

    <group>
      <sampling>
        <vectors> main cross </vectors>
        <lattice> 50 </lattice>
        <moments> P_out N_out </moments>
        <![CDATA[
          P_out = P;
          N_out = N;
        ]]>
      </sampling>
      </group>
  </output>
</simulation>
\end{xmdsCode}

This simulation solves for the propagation of an optical pulse through
a field of atoms having a transition frequency tuned to that of the
optical pulse centre frequency. The atoms are modelled as ``two
level'' atoms. The propagation equations, shown in \eqn{eq:tla}, are
deceptively simple.
\begin{align}
\frac{\partial E(t,z)}{\partial z} & = gP,\nonumber \\
\frac{\partial P(t,z)}{\partial t} & = EN,\nonumber \\
\frac{\partial N(t,z)}{\partial t} & = -EP.
\label{eq:tla}
\end{align}

The reality of this problem is that there are three components, two
propagating in the main propagation dimension, $t$, and the other in
the transverse dimension $z$. The component $E$ is the electric field
amplitude, $P$ the polarisation state of the atoms, and $N$ the
excitation state of the atoms (-1 being all in the ground state and +1
being all in the excited state). Lastly $g$ is a coupling constant
between the electric field and the atoms.

The curious feature of this set of PDEs, in fact the very reason why
it is chosen it as an example, is that there exists a soliton solution
for the electric field, as shown in \eqn{eq:tlaSolution}:
\begin{equation} 
E(t,z) = \frac{2}{gt_0} \mathrm{sech} \left(\frac{t-az}{t_0}\right),
\label{eq:tlaSolution}
\end{equation}
which is time lagged with propagation at the rate
\begin{equation}
a = \frac{g}{(t_0)^{2}}.
\end{equation}

The result for the electric field in the above simulation is shown in
\fig{fig:tla}, in which the soliton solution is evident.
\begin{figure}[ht]
\centerline{\includegraphics[width=\figwidth]{figures/tla}}
\caption{Results for tla.xmds}
\label{fig:tla}
\end{figure}

The cross propagating components, $N$ and $P$, may still be thought of
as existing in the same space as the main vector component, $E$, and
so they are declared as an extra vector in the \xmdsTag{field}
element. However, the equations governing the evolution of such cross
vectors are not allowed to include any transverse derivatives --
i.e. they are not allowed to be PDEs. Therefore, through the main
vector equations may be PDEs, the cross propagating vector need not be
transformed to Fourier space when the main vector is. So although the
cross vector components could be included as part of the main vector,
they are better defined as a separate vector for efficiency reasons.

In the SIIP integration algorithm the transverse evolution of the
cross vector is calculated simultaneously with the forward evolution
of the main vector, but in all other algorithms the cross vector is
calculated prior to calculating the main vector derivatives. Thus the
governing equations for the cross vector must be separated from those
for the main vector. This is done by including a
\xmdsTag{cross\_propagation} element within the main \xmdsTag{integrate}
element, and placing the cross vector equations within. Also required
within this element is a list of the \xmdsTag{vectors} that are to be
cross propagated, and a \xmdsTag{prop\_dim} assignment specifying the
dimension of cross propagation. The \xmdsTag{vectors} that were made
accessible for the main equations will also be accessible here.



\section{highdim.xmds} 
\label{sec:highdim}

\begin{xmdsCode}
<?xml version="1.0"?>
<simulation>
  <name>highdim</name>

  <!-- Global system parameters and functionality -->
  <prop_dim>t</prop_dim>
  <error_check>yes</error_check>
  <use_mpi>yes</use_mpi> 
  <use_wisdom>yes</use_wisdom>
  <benchmark>yes</benchmark>
  
  <!-- Global variables for the simulation -->
  <globals>
  <![CDATA[
    const double noise = 0.0;
    const double hbar = 1.05500000000e-34;
    const double M = 1.409539200000000e-25;
    const double omegax = 0.58976353090742;
    const double omegay = 0.58976353090742;
    const double omegaz = 0.58976353090742/30;
    const double U11 = 2.974797272874263e-51;
    const double U13 = -1.417820412490823e-50;
    const double U33 = 2.974797272874263e-51;
    const double inum = 1.0e6;
    const double Uoh11 = U11/hbar;
    const double Uoh13 = U13/hbar;
    const double Uoh33 = U33/hbar;
    const double mu = pow(15*inum*U11*omegax*omegay
              *omegaz/M_PI/4,0.4)*pow(M,0.6)/2;
    const double delta = 1.0e9;
    const double F = 2.0e-2;
    const double g = sqrt(Uoh11*2.0/delta);
    const double loss11=1.0e-2;
    const double loss12=1.6e-22;
    const double loss31=1.0e-2;
    const double loss32=1.6e-22;
    const double loss132=8.0e-17;
    const double chi = F*g*delta;
    const double biggamma = g*g*delta/2;
    const double gam13 = Uoh13/chi;
    const double gam33 = Uoh33/chi;
    const double gameff = (Uoh11-biggamma)/chi;
    const double gamloss11=loss11/2/chi;
    const double gamloss12=loss12/chi;
    const double gamloss31=loss31/2/chi;
    const double gamloss32=loss32/chi;
    const double gamloss132=loss132/chi;
    const double cnoise =  noise/sqrt(2.0); 
  ]]>
  </globals>  

    <argv>
	   <arg>
	       <name>kjoek</name>
	       <type>double</type>
	       <default_value>-1.0e6</default_value>
	   </arg>
	   <arg>
	       <name>joekappamax</name>
	       <type>double</type>
	       <default_value>1.0e2</default_value>
	   </arg>
    </argv>

  <!-- Field to be integrated over -->
  <field>
    <dimensions>x y z</dimensions>
    <lattice>16 16 16</lattice>
    <domains>(-1.2e-4,1.2e-4) (-1.2e-4,1.2e-4) (-8.0e-3,8.0e-3)</domains>
    <samples>1 1 1</samples>
    
    <vector>
      <name> vc1 </name>
      <type>double</type>
      <components>vcore V1r V3r gV1r gV3r</components>
      <fourier_space>no no no</fourier_space>
      <![CDATA[
   vcore = (omegax*omegax*x*x+omegay*omegay*y*y+omegaz*omegaz*z*z);
   V1r = 0.5*M*vcore/hbar/chi -(gameff+gam13/2)/2/(dx*dy*dz);
   V3r = M*vcore/hbar/chi -(gam13/2+gam33)/2/(dx*dy*dz);
   gV1r = 0.5*M*vcore/hbar/chi;
   gV3r = M*vcore/hbar/chi;
      ]]>
    </vector>
    
    <vector>
      <name> main </name>
      <type>complex</type>
      <components>phi1a phi1b phi3a phi3b gphi1a gphi3a</components>
      <fourier_space>no no no</fourier_space>
      <vectors> vc1 </vectors>
      <![CDATA[
        const double realfn = (mu-0.5*M*vcore)/Uoh11/hbar;
        
        phi1a = realfn>0. ? complex(sqrt(realfn),0) : complex(0,0);
        phi1b = realfn>0. ? complex(sqrt(realfn),0) : complex(0,0);
        phi3a = complex(0,0);
        phi3b = complex(0,0);
        gphi1a = realfn>0. ? complex(sqrt(realfn),0) : complex(0,0);
        gphi3a = complex(0,0);
      ]]>
    </vector>
  </field>

  <!-- The sequence of integrations to perform -->
  <sequence>
    <integrate>
      <algorithm>ARK89IP</algorithm>
      <interval>1e-7</interval>
       <tolerance>1.0e-7</tolerance>
      <lattice>1000</lattice>
      <samples>10 10 1</samples>
      <k_operators>
        <constant>yes</constant>
        <operator_names> L2p L2n L4p L4n </operator_names>
        <![CDATA[
          L2p = complex(0,-hbar/M/2/chi*(kx*kx+ky*ky+kz*kz));
          L2n = complex(0, hbar/M/2/chi*(kx*kx+ky*ky+kz*kz));
          L4p = complex(0,-hbar/M/4/chi*(kx*kx+ky*ky+kz*kz));
          L4n = complex(0, hbar/M/4/chi*(kx*kx+ky*ky+kz*kz));
        ]]>
      </k_operators>
      
        <moment_group>
        <moments>chippy</moments>
        <integrate_dimension>yes yes yes</integrate_dimension>
	    <![CDATA[
		chippy += ~gphi1a*gphi1a;   
		]]>
        </moment_group>    
          
        <moment_group>
        <moments>ippy ichippy</moments>
        <integrate_dimension>no no no</integrate_dimension>
	    <![CDATA[
		ippy += phi1a;
		ichippy += gphi1a;   
		]]>
        </moment_group>      
        <moment_group>
        <moments>py ic</moments>
        <integrate_dimension>yes yes no</integrate_dimension>
	    <![CDATA[
		py += phi1a;
		ic += gphi1a;   
		]]>
        </moment_group>      
        <moment_group>
        <moments>ppy ichi</moments>
        <integrate_dimension>no yes yes</integrate_dimension>
	    <![CDATA[
		ppy += phi1a;
		ichi += gphi1a;   
		]]>
        </moment_group>      
           
      <vectors> main vc1 </vectors>
      <![CDATA[
        const complex dens1 = phi1b*phi1a;
        const complex dens3 = phi3b*phi3a;
        
    const double gdens1 = (gphi1a.re*gphi1a.re+gphi1a.im*gphi1a.im);
    const double gdens3 = (gphi3a.re*gphi3a.re+gphi3a.im*gphi3a.im);

        dphi1a_dt = L2p[phi1a] + (-i*V1r-gamloss11
          +(gamloss132/2+gamloss12)/2/(dx*dy*dz))*phi1a 
          + (-i*gameff-gamloss12)*dens1*phi1a 
          - (i*gam13+gamloss132)*dens3*phi1a -i*phi1b*phi3a 
          + i*chippy*ippy;
                               
        dphi1b_dt = L2n[phi1b] + (i*V1r-gamloss11
          +(gamloss132/2+gamloss12)/2/(dx*dy*dz))*phi1b 
          + (i*gameff-gamloss12)*dens1*phi1b 
          + (i*gam13-gamloss132)*dens3*phi1b +i*phi1a*phi3b;
                             
        dphi3a_dt = L4p[phi3a] + (-i*V3r-gamloss31
          +(gamloss132/2+gamloss32)/2/(dx*dy*dz))*phi3a 
          + (-i*gam33-gamloss32)*dens3*phi3a 
          - i*0.5*phi1a*phi1a -(i*gam13+gamloss132)*dens1*phi3a;

        dphi3b_dt = L4n[phi3b] + (i*V3r-gamloss31
          +(gamloss132/2+gamloss32)/2/(dx*dy*dz))*phi3b 
          + (i*gam33-gamloss32)*dens3*phi3b 
          + i*0.5*phi1b*phi1b +(i*gam13-gamloss132)*dens1*phi3b;
                               
        dgphi1a_dt = L2p[gphi1a] + (-i*gV1r-gamloss11)*gphi1a 
           +(-i*gameff-gamloss12)*gdens1*ichippy 
          - (i*gam13+gamloss132)*gdens3*gphi1a-i*conj(gphi1a)*gphi3a;
                                 
        dgphi3a_dt = L4p[gphi3a] + (-i*gV3r-gamloss31)*gphi3a 
          +(-i*gam33-gamloss32)*gdens3*gphi3a 
          - i*0.5*gphi1a*gphi1a +(i*gam13-gamloss132)*gdens1*gphi3a;
      ]]>
    </integrate>
  </sequence>

  <!-- The output to generate -->
  <output format="binary" precision="double">
    <group>
      <sampling>
        <fourier_space>   no    no no</fourier_space>
        <lattice>         16    1  1</lattice>
        <moments>atoms molecules gatoms gmolecules</moments>
        <![CDATA[
          atoms=phi1b*phi1a;
          molecules=phi3b*phi3a;
          gatoms=conj(gphi1a)*gphi1a;
          gmolecules=conj(gphi3a)*gphi3a;
        ]]>
      </sampling>
    </group>
    <group>
      <sampling>
        <fourier_space>    no   no  no</fourier_space>
        <lattice>           0    16   0</lattice>
        <moments>rn_1 rn_2 grn_1 grn_2 excitedn</moments>
        <![CDATA[
    rn_1 = phi1b*phi1a;
    rn_2 = phi3b*phi3a;
    grn_1 = conj(gphi1a)*gphi1a;
    grn_2 = conj(gphi3a)*gphi3a;
    excitedn = g*g/4*phi1b*phi1b*phi1a*phi1a+F*F*phi3b*phi3a
                     - F*g/2*(phi1b*phi1b*phi3a+phi1a*phi1a*phi3b);
        ]]>
      </sampling>
    </group>
    <group>
      <sampling>
        <fourier_space>   no no no</fourier_space>
        <lattice>         4    8  16</lattice>
        <moments>atomsr moleculesr atomsi moleculesi</moments>
        <![CDATA[
          atomsr=phi1a;
          moleculesr=phi3a;
          atomsi=-i*gphi1a;
          moleculesi=-i*gphi3a;
        ]]>
      </sampling>
    </group>
  </output>

</simulation>
\end{xmdsCode}

This simulation is included to highlight the usage of moment groups in evolution.
Here we wish to use various variables integrated over one, two or all the 
transverse dimensions.  This is done in integrate or filter elements by the inclusion of 
a moment group.  Using the first as an example:

\begin{verbatim}        <moment_group>
        <moments>chippy</moments>
        <integrate_dimension>yes yes yes</integrate_dimension>
	    <![CDATA[
		chippy += ~gphi1a*gphi1a;   
		]]>
        </moment_group>         \end{verbatim}  

The syntax is similar to output and filter syntax, but note that the equality must be a "+=" and not simply "=".  This element provides the integral of the modulus squared of the field gphi1a, which can then be used normally in the integration code by the designated name, chippy.  Other variables are actually fields in which any number of transverse dimensions may be integrated, and the others are left.

When \xmdsTag{functions} and \xmdsTag{moment\_group} elements are used, the position of the \xmdsTag{vectors} tag is crucial.  It specifies when the integrate code is to be executed, which will usually need to be after the moment groups are calculated.  


\section{highdim\_vector\_version.xmds} 
\label{sec:highdimVectorVersion}

\begin{xmdsCode}
<?xml version="1.0"?>
<simulation>
  <name>highdim</name>
  <!-- Global system parameters and functionality -->
  <prop_dim>t</prop_dim>
  <error_check>yes</error_check>
  <use_mpi>yes</use_mpi> 
  <use_wisdom>yes</use_wisdom>
  <benchmark>yes</benchmark>
  
  <!-- Global variables for the simulation -->
  <globals>
  <![CDATA[
    const double noise = 0.0;
    const double hbar = 1.05500000000e-34;
    const double M = 1.409539200000000e-25;
    const double omegax = 0.58976353090742;
    const double omegay = 0.58976353090742;
    const double omegaz = 0.58976353090742/30;
    const double U11 = 2.974797272874263e-51;
    const double U13 = -1.417820412490823e-50;
    const double U33 = 2.974797272874263e-51;
    const double inum = 1.0e6;
    const double Uoh11 = U11/hbar;
    const double Uoh13 = U13/hbar;
    const double Uoh33 = U33/hbar;
    const double mu = pow(15*inum*U11*omegax*omegay
              *omegaz/M_PI/4,0.4)*pow(M,0.6)/2;
    const double delta = 1.0e9;
    const double F = 2.0e-2;
    const double g = sqrt(Uoh11*2.0/delta);
    const double loss11=1.0e-2;
    const double loss12=1.6e-22;
    const double loss31=1.0e-2;
    const double loss32=1.6e-22;
    const double loss132=8.0e-17;
    const double chi = F*g*delta;
    const double biggamma = g*g*delta/2;
    const double gam13 = Uoh13/chi;
    const double gam33 = Uoh33/chi;
    const double gameff = (Uoh11-biggamma)/chi;
    const double gamloss11=loss11/2/chi;
    const double gamloss12=loss12/chi;
    const double gamloss31=loss31/2/chi;
    const double gamloss32=loss32/chi;
    const double gamloss132=loss132/chi;
    const double cnoise =  noise/sqrt(2.0); 
  ]]>
  </globals>  

    <argv>
	   <arg>
	       <name>kjoek</name>
	       <type>double</type>
	       <default_value>-1.0e6</default_value>
	   </arg>
	   <arg>
	       <name>joekappamax</name>
	       <type>double</type>
	       <default_value>1.0e2</default_value>
	   </arg>
    </argv>

  <!-- Field to be integrated over -->
  <field>
    <dimensions>x y z</dimensions>
    <lattice>16 16 16</lattice>
<domains>(-1.2e-4,1.2e-4) (-1.2e-4,1.2e-4) (-8.0e-3,8.0e-3)</domains>
    <samples>1 1 1</samples>
    
    <vector>
      <name> vc1 </name>
      <type>double</type>
      <components>Vr(5)</components>
      <fourier_space>no no no</fourier_space>
      <![CDATA[
     Vr(1) = (omegax*omegax*x*x+omegay*omegay*y*y+omegaz*omegaz*z*z);
     Vr(2) = 0.5*M*Vr(1)/hbar/chi -(gameff+gam13/2)/2/(dx*dy*dz);
     Vr(3) = M*Vr(1)/hbar/chi -(gam13/2+gam33)/2/(dx*dy*dz);
     Vr(4) = 0.5*M*Vr(1)/hbar/chi;
     Vr(5) = M*Vr(1)/hbar/chi;
      ]]>
    </vector>
    
    <vector>
      <name> main </name>
      <type>complex</type>
      <components> phi(6) </components>
      <fourier_space>no no no</fourier_space>
      <vectors> vc1 </vectors>
      <![CDATA[
        const double realfn = (mu-0.5*M*Vr(1))/Uoh11/hbar;
        
       for(long j=1; j<7; j++) {
         if (j==1||j==2||j==5)
          phi(j) = realfn>0. ? complex(sqrt(realfn),0) : complex(0,0);
        else
          phi(j) = complex(0,0);
 	}
      ]]>
    </vector>
  </field>

  <!-- The sequence of integrations to perform -->
  <sequence>
    <integrate>
      <algorithm>ARK89EX</algorithm>
      <interval>1e-7</interval>
      <tolerance>1.0e-7</tolerance>
      <lattice>1000</lattice>
      <samples>10 10 1</samples>
      <k_operators>
        <constant>yes</constant>
        <operator_names> L2p L2n L4p L4n </operator_names>
        <![CDATA[
          L2p = complex(0,-hbar/M/2/chi*(kx*kx+ky*ky+kz*kz));
          L2n = complex(0, hbar/M/2/chi*(kx*kx+ky*ky+kz*kz));
          L4p = complex(0,-hbar/M/4/chi*(kx*kx+ky*ky+kz*kz));
          L4n = complex(0, hbar/M/4/chi*(kx*kx+ky*ky+kz*kz));
        ]]>
      </k_operators>
      
        <moment_group>
        <moments>chippy</moments>
        <integrate_dimension>yes yes yes</integrate_dimension>
	    <![CDATA[
		chippy += ~phi(5)*phi(5);   
		]]>
        </moment_group>    
          
        <moment_group>
        <moments>ippy ichippy</moments>
        <integrate_dimension>no no no</integrate_dimension>
	    <![CDATA[
		ippy += phi(1);
		ichippy += phi(5);   
		]]>
        </moment_group>      
        <moment_group>
        <moments>py ic</moments>
        <integrate_dimension>yes yes no</integrate_dimension>
	    <![CDATA[
		py += phi(1);
		ic += phi(5);   
		]]>
        </moment_group>      
        <moment_group>
        <moments>ppy ichi</moments>
        <integrate_dimension>no yes yes</integrate_dimension>
	    <![CDATA[
		ppy += phi(1);
		ichi += phi(5);   
		]]>
        </moment_group>      
           
      <vectors> main vc1 </vectors>
      <![CDATA[
        const complex dens1 = phi(2)*phi(1);
        const complex dens3 = phi(4)*phi(3);
        
     const double gdens1 = (phi(5).re*phi(5).re+phi(5).im*phi(5).im);
     const double gdens3 = (phi(6).re*phi(6).re+phi(6).im*phi(6).im);
               
        dphi_dt(1) = L2p[phi](1) + (-i*Vr(2)-gamloss11
             +(gamloss132/2+gamloss12)/2/(dx*dy*dz))*phi(1) 
             + (-i*gameff-gamloss12)*dens1*phi(1) 
             - (i*gam13+gamloss132)*dens3*phi(1) -i*phi(2)*phi(3) 
             + i*chippy*ippy;
                             
        dphi_dt(2) = L2n[phi](2) + (i*Vr(2)-gamloss11
             +(gamloss132/2+gamloss12)/2/(dx*dy*dz))*phi(2) 
             + (i*gameff-gamloss12)*dens1*phi(2) 
             + (i*gam13-gamloss132)*dens3*phi(2) +i*phi(1)*phi(4);
                             
        dphi_dt(3) = L4p[phi](3) + (-i*Vr(3)-gamloss31
             +(gamloss132/2+gamloss32)/2/(dx*dy*dz))*phi(3) 
             + (-i*gam33-gamloss32)*dens3*phi(3) 
             - i*0.5*phi(1)*phi(1) -(i*gam13+gamloss132)*dens1*phi(3);
                             
        dphi_dt(4) = L4n[phi](4) + (i*Vr(3)-gamloss31+(gamloss132/2
           +gamloss32)/2/(dx*dy*dz))*phi(4) 
           + (i*gam33-gamloss32)*dens3*phi(4) 
           + i*0.5*phi(2)*phi(2) +(i*gam13-gamloss132)*dens1*phi(4);
                             
        dphi_dt(5) = L2p[phi](5) + (-i*Vr(4)-gamloss11)*phi(5) 
           +(-i*gameff-gamloss12)*gdens1*ichippy 
           - (i*gam13+gamloss132)*gdens3*phi(5)-i*conj(phi(5))*phi(6);
                              
        dphi_dt(6) = L4p[phi](6) + (-i*Vr(5)-gamloss31)*phi(6) 
           +(-i*gam33-gamloss32)*gdens3*phi(6) 
           - i*0.5*phi(5)*phi(5) +(i*gam13-gamloss132)*gdens1*phi(6);
      ]]>
    </integrate>
  </sequence>

  <!-- The output to generate -->
  <output format="binary" precision="double">
    <group>
      <sampling>
        <fourier_space>   no    no no</fourier_space>
        <lattice>         16    1  1</lattice>
        <moments>atoms molecules gatoms gmolecules</moments>
        <![CDATA[
          atoms=phi(2)*phi(1);
          molecules=phi(4)*phi(3);
          gatoms=conj(phi(5))*phi(5);
          gmolecules=conj(phi(6))*phi(6);
        ]]>
      </sampling>
    </group>
    <group>
      <sampling>
        <fourier_space>    no   no  no</fourier_space>
        <lattice>           0    16   0</lattice>
        <moments>rn_1 rn_2 grn_1 grn_2 excitedn</moments>
        <![CDATA[
    rn_1 = phi(2)*phi(1);
    rn_2 = phi(4)*phi(3);
    grn_1 = conj(phi(5))*phi(5);
    grn_2 = conj(phi(6))*phi(6);
    excitedn = g*g/4*phi(2)*phi(2)*phi(1)*phi(1)+F*F*phi(4)*phi(3)
     - F*g/2*(phi(2)*phi(2)*phi(3)+phi(1)*phi(1)*phi(4));
        ]]>
      </sampling>
    </group>
    <group>
      <sampling>
        <fourier_space>   no no no</fourier_space>
        <lattice>         4    8  16</lattice>
        <moments>atomsr moleculesr atomsi moleculesi</moments>
        <![CDATA[
          atomsr=phi(1);
          moleculesr=phi(3);
          atomsi=-i*phi(5);
          moleculesi=-i*phi(6);
        ]]>
      </sampling>
    </group>
  </output>

</simulation>
\end{xmdsCode}

This simulation is identical in function to the highdim.xmds example above, but describes the fields as an array of components rather than a list.  This notation may be very valuable when the numbers of component get very large and the equations can be easily described in terms of the index.

WARNING: There is no bounds checking on the index of your field, so be careful when writing your equations in this form.

When using this notation, if XMDS needs to calculate the k-space operator of any of the components of an array, all of them are calculated.  This makes, for example, highdim\_vector\_version.xmds slower than the old version.

IMPORTANT:  For interaction picture algorithms, if a k-space operator is applied to any component of a vector, then it is applied to ALL OF THEM.  This means that highdim\_vector\_version.xmds only solves the correct equations when used with an EX algorithm.