File: xmds_vector_element.cc

package info (click to toggle)
xmds 1.6.6-4
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 3,752 kB
  • ctags: 1,571
  • sloc: cpp: 35,402; sh: 7,408; ansic: 1,029; makefile: 244
file content (985 lines) | stat: -rw-r--r-- 41,946 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
/*
  Copyright (C) 2000-2008

  Code contributed by Greg Collecutt, Joseph Hope and Paul Cochrane

  This file is part of xmds.

  This program is free software; you can redistribute it and/or
  modify it under the terms of the GNU General Public License
  as published by the Free Software Foundation; either version 2
  of the License, or (at your option) any later version.

  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with this program; if not, write to the Free Software
  Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
*/

/*
  $Id: xmds_vector_element.cc 1885 2008-03-18 15:24:56Z paultcochrane $
*/

/*! @file xmds_vector_element.cc
  @brief Vector element parsing classes and methods

  More detailed explanation...
*/

#include <xmds_common.h>
#include <xmds_vector_element.h>
#include <xmds_simulation.h>

// **************************************************************************
// **************************************************************************
//                              xmdsVectorElement public
// **************************************************************************
// **************************************************************************

extern bool debugFlag;

long nxmdsVectorElements=0;   //!< The number of xmds vector elements

enum {
  ASCII = 1,
  BINARY = 2,
  XSIL = 3
};

// **************************************************************************
xmdsVectorElement::xmdsVectorElement(
                                     const xmdsSimulation *const yourSimulation,
                                     const bool& yourVerboseMode,
                                     const xmdsField *const yourField) :
  xmdsVector(yourField),
  xmdsElement(yourSimulation, yourVerboseMode) {
  if (debugFlag) {
    nxmdsVectorElements++;
    printf("xmdsVectorElement::xmdsVectorElement\n");
    printf("nxmdsVectorElements=%li\n", nxmdsVectorElements);
  }
}

// **************************************************************************
xmdsVectorElement::~xmdsVectorElement() {
  if (debugFlag) {
    nxmdsVectorElements--;
    printf("xmdsVectorElement::~xmdsVectorElement\n");
    printf("nxmdsVectorElements=%li\n", nxmdsVectorElements);
  }
}

// **************************************************************************
void xmdsVectorElement::processElement(
                                       const Element *const yourElement) {
  if (debugFlag) {
    printf("xmdsVectorElement::processElement\n");
  }
  
  list<XMLString> anXMLStringList;
  list<long> aLongList;
  XMLString anXMLString;
  
  if (verbose()) {
    printf("Processing vector element ...\n");
  }
  
  // ************************************
  // find name
  
  getAssignmentStrings(yourElement, "name", 1, 1, anXMLStringList);
  
  const xmdsVector* possibleTwin;
  
  if (field()->getVector(*anXMLStringList.begin(), possibleTwin)) {
    sprintf(errorMessage(), "a vector of name '%s' already exists in this field", anXMLStringList.begin()->c_str());
    throw xmdsException(yourElement, errorMessage());
  }
  
  setName(*anXMLStringList.begin());
  if (verbose()) {
    printf("vector name is '%s'\n", name()->c_str());
  }
  
  // ************************************
  // find type
  
  getAssignmentStrings(yourElement, "type", 0, 1, anXMLStringList);
  
  if (anXMLStringList.size()==1) {
    
    if (*anXMLStringList.begin()=="complex") {
      setVectorType(COMPLEX);
      if (verbose()) {
        printf("vector type is 'complex'\n");
      }
    }
    else if (*anXMLStringList.begin()=="double") {
      setVectorType(DOUBLE);
      if (verbose()) {
        printf("vector type is 'double'\n");
      }
    }
    else {
    }
  }
  else {
    setVectorType(COMPLEX);
    printf("vector type defaulting to 'complex'\n");
  }
  
  // ************************************
  // find components
  
  getAssignmentVectorStrings(yourElement, "components", 1, 0, anXMLStringList, aLongList);
  
  if (anXMLStringList.size()==0) {
    throw xmdsException(yourElement, "No vector components specified!");
  }
  
  setComponents(anXMLStringList);
  setLengths(aLongList);
  
  if (verbose()) {
    for (unsigned long i=0; i<nComponents(); i++) {
      printf("adding vector component '%s'\n", componentName(i)->c_str());
    }
  }
  
  // ************************************
  // find 'filename'
  
  getAssignmentStrings(yourElement, "filename", NOT_REQD, 1, anXMLStringList);
  
  if (anXMLStringList.size()==1) {
    // we have a filename assignent
    
    getAttributeStrings(yourElement, "filename", "format", NOT_REQD, anXMLString);
    myInputFileFormat = ASCII;  // the default value
    
    setInitialSpace(0);
    
    if (anXMLString != EMPTY_STRING) {
      // a format attribute has been set
      if (anXMLString == "binary") {
        myInputFileFormat = BINARY;
      }
      else if (anXMLString == "bin") {
        myInputFileFormat = BINARY;
      }
      else if (anXMLString == "ascii") {
        myInputFileFormat = ASCII;
      }
      else if (anXMLString == "text") {
        myInputFileFormat = ASCII;
      }
      else if (anXMLString == "txt") {
        myInputFileFormat = ASCII;
      }
      else if (anXMLString == "xsil") {
        myInputFileFormat = XSIL;
        
        // find the moment group that we are initialising from
        XMLString momentGroupName;
        getAttributeStrings(yourElement, "filename", "moment_group", NOT_REQD, momentGroupName);
        if (momentGroupName == EMPTY_STRING)
          myInitialisationMomentGroupName = "NULL";
        else
          myInitialisationMomentGroupName = string("moment_group_") + momentGroupName.c_str();
        
        
        // find the geometry matching mode
        XMLString geometryMatchMode;
        getAttributeStrings(yourElement, "filename", "geometry_matching_mode", NOT_REQD, geometryMatchMode);
        if (geometryMatchMode != EMPTY_STRING) {
          if (geometryMatchMode == "strict")
            isGeometryMatchingModeStrict = true;
          else if (geometryMatchMode == "loose")
            isGeometryMatchingModeStrict = false;
          else
            throw xmdsException(yourElement, "The geometry matching mode must be either 'strict' or 'loose'");
        }
        else
          isGeometryMatchingModeStrict = true;
        
        if (field()->geometry()->nDims()>0) {
          
          // ************************************
          // find space
          
          list<bool> aSpaceList;
          
          getAssignmentBools(yourElement, "fourier_space", 0, field()->geometry()->nDims(), aSpaceList);
          
          if (aSpaceList.size() == 0) {
            printf("Initialisation space for vector '%s' defaulting to x-space.\n", name()->c_str());
          }
          else {
            list<bool>::const_iterator pBool = aSpaceList.begin();
            for (unsigned long i=0; i<field()->geometry()->nDims(); i++) {
              if (verbose()) {
                if (*pBool) {
                  printf("initialisation will be performed with dimension #%li in fourier space\n", i+1);
                }
                else {
                  printf("initialisation will be performed with dimension #%li in normal space\n", i+1);
                }
              }
              pBool++;
            }
            setInitialSpace(spaceList2ULong(aSpaceList));
          }
        }
        // ************************************
        // find vectors
        
        getAssignmentStrings(yourElement, "vectors", 0, 0, myVectorNamesList);
        
        field()->processVectors(myVectorNamesList, initialSpace());
        
        // ************************************
        // find code
        
        myCode=*yourElement->textContent(0);
        
      }
      else {
        throw xmdsException(yourElement,
                  "Warning: Unknown file format attribute value in 'filename' tag\nI expected either 'binary', 'ascii' or 'xsil'.");
      }
    }
    
    myFileName=*anXMLStringList.begin();
    if (verbose()) {
      printf("vector initialisation from file '%s'\n", myFileName.c_str());
    }
    
  }
  else {
    // initialisation from code
    if (verbose()) {
      printf("initialisation from user code\n");
    }
    
    setInitialSpace(0);
    
    if (field()->geometry()->nDims()>0) {
      
      // ************************************
      // find space
      
      list<bool> aSpaceList;
      
      getAssignmentBools(yourElement, "fourier_space", 0, field()->geometry()->nDims(), aSpaceList);
      
      if (aSpaceList.size() == 0) {
        printf("Initialisation space for vector '%s' defaulting to x-space.\n", name()->c_str());
      }
      else {
        list<bool>::const_iterator pBool = aSpaceList.begin();
        for (unsigned long i=0; i<field()->geometry()->nDims(); i++) {
          if (verbose()) {
            if (*pBool) {
              printf("initialisation will be performed with dimension #%li in fourier space\n", i+1);
            }
            else {
              printf("initialisation will be performed with dimension #%li in normal space\n", i+1);
            }
          }
          pBool++;
        }
        setInitialSpace(spaceList2ULong(aSpaceList));
      }
    }
    
    // ************************************
    // find vectors
    
    getAssignmentStrings(yourElement, "vectors", 0, 0, myVectorNamesList);
    
    field()->processVectors(myVectorNamesList, initialSpace());
    
    // ************************************
    // find code
    
    myCode=*yourElement->textContent(0);
    
    // check for non-white space charaters in code:
    
    if (myCode.isAllWhiteSpace()) {
      throw xmdsException(yourElement, "No initialisation code defined!");
    }
    
    if (verbose()) {
      printf("initialisation code loaded\n");
    }
  }
}

// **************************************************************************
// **************************************************************************
//                              xmdsVectorElement private
// **************************************************************************
// **************************************************************************

// **************************************************************************
void xmdsVectorElement::writeInitialiseRoutine(FILE *const outfile) const
{
  if (debugFlag) {
    printf("xmdsVectorElement::writeInitialise\n");
  }

  const unsigned long nDims = field()->geometry()->nDims();
  const char *const fieldName = field()->name()->c_str();
  const char *const vectorName = name()->c_str();

  fprintf(outfile,
          "// *************************\n"
          "void _%s_%s_initialise() {\n\n",
          fieldName,
          vectorName);

  if (simulation()->parameters()->useOpenMP) {
    // This may seem a little bizarre, but this is important for supercomputers that use a NUMA
    // (non-uniform memory addressing) architecture (e.g. ANU's ac supercomputer)
    // Memory is assigned to the process that first accesses it, so if we initialise the whole field to zero
    // in a parallel fashion, then memory should be assigned to the thread that will use it in future. If we just
    // did this with a single thread, then all the memory would be 'local' on the first thread, and any time any other
    // thread tries to access this memory, it will need to talk to the node on which this memory is stored.

    fprintf(outfile, "#ifdef _OPENMP\n" // this code is unnecessary if OpenMP isn't actually available
            "{\n");  // ensure that loop variables are all local

    // Begin loop over the grid (for this vector)
    list<XMLString> vectorNameList;
    vectorNameList.push_back(*name());
    field()->openLoops(outfile, initialSpace(), vectorNameList, PARALLELISE_LOOP);
    for (long unsigned int i=0; i<nComponents(); i++) {
      fprintf(outfile, "\t %s = 0.0;\n", componentName(i)->c_str());
    }
    field()->closeLoops(outfile, initialSpace(), vectorNameList);
    fprintf(outfile, "}\n"
            "#endif // _OPENMP\n\n");
  }

  if (myFileName.length()>0) {
    // initialisation from file

    if (myInputFileFormat == ASCII) {

      fprintf(outfile,
              "FILE* infile = fopen(\"%s\", \"r\");\n"
              "\n"
              "if (infile==0) {\n"
              "\t printf(\"Error opening file '%s' for initialisation of vector '%s'\\n\");\n"
              "\t exit(255);\n"
              "\t }\n"
              "\n"
              "unsigned long _i0=0;\n"
              "\n",
              myFileName.c_str(),
              myFileName.c_str(),
              vectorName);
      if (simulation()->parameters()->usempi&!simulation()->parameters()->stochastic) {
        //forwarding to "ranks' point in file. Slow but safe
        fprintf(outfile, "double _garbage=0.0;\n");
        fprintf(outfile, "for (unsigned long _i0=0; _i0<(_%s_size/_%s_lattice0)*_%s_%s_ncomponents*local_x_start; _i0++){\n", fieldName, fieldName, fieldName, vectorName);

        if (vectorType()==COMPLEX) {
          fprintf(outfile, "\t if (fscanf(infile, \"%%lf %%lf\", &_garbage, &_garbage) != 2) \n");
        }
        else if (vectorType()==DOUBLE) {
          fprintf(outfile, "\t if (fscanf(infile, \"%%lf\", &_garbage) != 1) \n");
        }
        fprintf(outfile,
                "\t\t printf(\"Rank %%i Error forwarding '%s' from file '%s': either bad float format or insufficient data\\n\", rank);\n", vectorName,
                myFileName.c_str());

        fprintf(outfile, "}\n");
        fprintf(outfile, "\n");
        fprintf(outfile, "while(_i0<total_local_size*_%s_%s_ncomponents) {\n",
                fieldName,
                fieldName);
      }
      else{
        fprintf(outfile, "while(_i0<_%s_size*_%s_%s_ncomponents) {\n",
                fieldName,
                fieldName,
                vectorName);
      }

      if (vectorType()==COMPLEX) {
        fprintf(outfile, "\t if (fscanf(infile, \"%%lf %%lf\", &_%s_%s[_i0].re, &_%s_%s[_i0].im) != 2) {\n",
                fieldName, vectorName, fieldName, vectorName);
      }
      else if (vectorType()==DOUBLE) {
        fprintf(outfile, "\t if (fscanf(infile, \"%%lf\", &_%s_%s[_i0]) != 1) {\n", fieldName, vectorName);
      }
      fprintf(outfile,
              "\t\t printf(\"Error loading '%s' from file '%s': either bad float format or insufficient data\\n\");\n", vectorName,
              myFileName.c_str());

      if (simulation()->parameters()->usempi&!simulation()->parameters()->stochastic)
        fprintf(outfile, "\t\t _i0=total_local_size*_%s_%s_ncomponents;\n",
                fieldName,
                vectorName);
      else
        fprintf(outfile, "\t\t _i0=_%s_size*_%s_%s_ncomponents;\n",
                fieldName,
                fieldName,
                vectorName);
      /*  This next line kills the program at this point.
          We may or may not want to do this, although I just had a user
          request that the program not continue past this error. (Wasted time)
          Reverting is as simple as deleting the next line.  (JJH)  */
      fprintf(outfile, "\t\t exit(255);\n"
              "\t }\n"
              "\t _i0++;\n"
              "}\n"
              "\n"
              "fclose(infile);\n");

    }
    else if (myInputFileFormat == BINARY) {
      fprintf(outfile,
              "FILE* infile = fopen(\"%s\", \"rb\");\n"
              "\n"
              "if (infile==0) {\n"
              "\t printf(\"Error opening file '%s' for initialisation of vector '%s'\\n\");\n"
              "\t return;\n"
              "\t }\n"
              "\n",
              myFileName.c_str(),
              myFileName.c_str(),
              vectorName);

      // Begin loop over the grid (for this vector)
      list<XMLString> vectorNameList;
      vectorNameList.push_back(*name());
      // This loop isn't parallelisable due to the use of fseek/fread
      field()->openLoops(outfile, initialSpace(), vectorNameList, DO_NOT_PARALLELISE_LOOP);
      // Index pointer into the input array
      fprintf(outfile, "unsigned long _inputfield_index_pointer=0;\n");

      for (long unsigned int i=0; i<field()->geometry()->nDims(); i++) {
        string dimName;
        if (!((initialSpace()>>i)&1)) {
          // x space
          dimName = field()->geometry()->dimension(i)->name.c_str();
          fprintf(outfile, "long _inputfield_i%1$li = lround((%2$s - _%3$s_xmin%1$li)/_%3$s_dx%1$li);\n\n",
                  i, dimName.c_str(), fieldName);
        }
        else {
          // k space
          dimName = string("k") + field()->geometry()->dimension(i)->name.c_str();
          fprintf(outfile, "long _inputfield_i%1$li = lround(%2$s/_%3$s_dk%1$li) + (_%3$s_lattice%1$li/2);\n"
                  , i, dimName.c_str(), fieldName);
        }

        // Calculate the input field index pointer
        fprintf(outfile, "_inputfield_index_pointer += _inputfield_i%li", i);
        for (long unsigned int j=i+1; j<field()->geometry()->nDims(); j++) {
          fprintf(outfile, "*_%s_lattice%li", fieldName, j);
        }
        fprintf(outfile, ";\n\n");

      }


      fprintf(outfile, "fseek(infile, _inputfield_index_pointer*sizeof(%s)*_%s_%s_ncomponents, SEEK_SET);\n", vectorType()==COMPLEX ? "complex" : "double", fieldName, vectorName);
      fprintf(outfile, "fread(_%1$s_%2$s + _%1$s_%2$s_index_pointer, sizeof(%3$s), _%1$s_%2$s_ncomponents, infile);\n", fieldName, vectorName, vectorType()==COMPLEX ? "complex" : "double");

      field()->closeLoops(outfile, initialSpace(), vectorNameList);
      /*
        if (vectorType()==COMPLEX) {
        //  We are cutting the temporary variable due to stack overflow.  Why was this done this way originally?
        // fprintf(outfile, "\t complex _tempInput[_%s_size*_%s_%s_ncomponents];\n",
        //   fieldName, fieldName, vectorName);
        // fprintf(outfile, "\t fread(&_tempInput, sizeof(complex), _%s_size*_%s_%s_ncomponents, infile);\n",
        //   fieldName, fieldName, vectorName);
        fprintf(outfile, "\t fread(_%s_%s, sizeof(complex), _%s_size*_%s_%s_ncomponents, infile);\n", fieldName, vectorName,
        fieldName, fieldName, vectorName);
        // fprintf(outfile, "\t _%s_%s = _tempInput;\n", fieldName, vectorName);
        }
        else if (vectorType()==DOUBLE) {
        // fprintf(outfile, "\t double _tempInput[_%s_size*_%s_%s_ncomponents];\n",
        //   fieldName, fieldName, vectorName);
        // fprintf(outfile, "\t fread(&_tempInput, sizeof(double), _%s_size*_%s_%s_ncomponents, infile);\n",
        //   fieldName, fieldName, vectorName);
        fprintf(outfile, "\t fread(_%s_%s, sizeof(double), _%s_size*_%s_%s_ncomponents, infile);\n", fieldName, vectorName,
        fieldName, fieldName, vectorName);
        // fprintf(outfile, "\t _%s_%s = _tempInput;\n", fieldName, vectorName);
        }*/
      fprintf(outfile,
              "\n"
              "fclose(infile);\n");
    }
    else if (myInputFileFormat == XSIL) {
      // Create noises if needed
      if (simulation()->parameters()->stochastic) {
        fprintf(outfile, "const double _var = 1.0");
        for (unsigned long i=0; i<nDims; i++) {
          if (space(i)) {
            fprintf(outfile, "/_%s_dk%li", fieldName, i);
          }
          else {
            fprintf(outfile, "/_%s_dx%li", fieldName, i);
          }
        }
        fprintf(outfile, ";\n");
        fprintf(outfile, "double *_noises = new double[_n_noises];\n");
        if (simulation()->parameters()->errorCheck) {
          fprintf(outfile, "double *_noises2 = new double[_n_noises];\n");
        }
        fprintf(outfile, "\n");
      }
      // Write variables for this routine
      fprintf(outfile, "\t char **dimNames  = new char* [_%1$s_ndims];\n"
              "\t double *dimDelta = new double[_%1$s_ndims];\n" // use the first argument. Saves writing it out half a dozen times
              "\t double *dimMin   = new double[_%1$s_ndims];\n"
              "\t unsigned long *dimLattice = new unsigned long[_%1$s_ndims];\n\n",
              fieldName);
      for (long unsigned int i=0; i<field()->geometry()->nDims(); i++) {
        fprintf(outfile, "\t dimNames[%1$li]   = \"%2$s%3$s\";\n"
                "\t dimDelta[%1$li]   = _%4$s_d%5$s%1$li;\n",
                i,
                (initialSpace()>>i)&1 ? "k" : "",
                field()->geometry()->dimension(i)->name.c_str(),
                fieldName,
                (initialSpace()>>i)&1 ? "k" : "x");
        if ((initialSpace()>>i)&1)
          fprintf(outfile, "\t dimMin[%1$li]     = (-(_%2$s_lattice%1$li)/2)*_%2$s_dk%1$li;\n",
                  i, fieldName);
        else
          fprintf(outfile, "\t dimMin[%1$li]     = _%2$s_xmin%1$li;\n",
                  i, fieldName);
        fprintf(outfile, "\t dimLattice[%1$li] = _main_lattice%1$li;\n\n", i);
      }

      int vectorComponents = nComponents();

      fprintf(outfile, "\t char **componentNames = new char*[%1$i+1];\n"
              "\t int *componentFieldIndices = new int[%1$i];\n\n",
              vectorType()==DOUBLE ? vectorComponents : 2*vectorComponents);

      int index=0;
      for (int naturalIndex=0; naturalIndex<vectorComponents; naturalIndex++) {
        fprintf(outfile, "\t componentNames[%i] = \"%sR\";\n",
                index, componentName(naturalIndex)->c_str());
        index++;

        if (vectorType()==COMPLEX) {
          fprintf(outfile, "\t componentNames[%i] = \"%sI\";\n", index, componentName(naturalIndex)->c_str());
          index++;
        }
        fprintf(outfile, "\n");
      }
      fprintf(outfile, "\t componentNames[%i] = NULL;\n\n", index);

      // This are the output variables for initialiseFieldFromXSILFile
      fprintf(outfile, "\t char *binaryDataFilename;\n"
              "\t int unsignedLongSize;\n"
              "\t bool dataEncodingIsNative;\n"
              "\t bool isPrecisionDouble;\n"
              "\t unsigned long nDataComponents;\n"
              "\t unsigned long *inputLattice;\n"
              "\t int *componentInputIndices;\n\n"
              "\t if (!initialiseFieldFromXSILFile(\"%s\", \"%s\", _%s_ndims, dimNames, componentNames, \n" //file, moment group and field
              "// output variables\n"
              "\t\t\t &binaryDataFilename, &unsignedLongSize, &dataEncodingIsNative, &isPrecisionDouble, &nDataComponents, &inputLattice, &componentInputIndices)) {\n",
              myFileName.c_str(), myInitialisationMomentGroupName.c_str(), fieldName);
      if (simulation()->parameters()->usempi && !simulation()->parameters()->stochastic) {
        fprintf(outfile, "\t\t printf(\"Rank [%%i]: Unable to load data from XSIL file.\\nExiting.\\n\", rank);\n"
                "\t\t MPI_Abort(MPI_COMM_WORLD, 1);\n"
                "\t\t exit(1);\n");
      }
      else {
        fprintf(outfile, "\t\t printf(\"Unable to load data from XSIL file.\\nExiting.\\n\");\n"
                "\t\t exit(1);\n");
      }
      fprintf(outfile, "\t }\n\n");

      // Open the binary data file
      fprintf(outfile, "\t FILE *inputFile = fopen(binaryDataFilename, \"rb\");\n"
              "\t if (inputFile == NULL) {\n"
              "\t\t printf(\"Unable to open binary input file %%s\\n\", binaryDataFilename);\n"
              "\t\t exit(1);\n"
              "\t }\n"
              "// I would like to point out that the binary data described by the XSIL file does *NOT* follow the file format described in the spec.\n\n"
              "typedef union {\n"
              "\t float *floatPtr;\n"
              "\t double *doublePtr;\n"
              "} GenericRealNumberPtr;\n\n"
              "typedef union {\n"
              "\t unsigned long ulong;\n"
              "\t uint32_t uint32;\n"
              "\t uint64_t uint64;\n"
              "} GenericUnsignedLong;\n\n"
              "\t GenericUnsignedLong size;\n"
              "\t GenericRealNumberPtr *inputData = new GenericRealNumberPtr[_%s_ndims];\n"
              "\t for (int __i=0; __i<_%s_ndims; __i++) {\n" // loop over the dimension elements in the binary file
              "\t\t uint64_t sizeValue;\n"
              "\t\t switch(unsignedLongSize) {\n", fieldName, fieldName); // deal with the different possible sizes for the unsigned long size
      const char *string1[] = {"0", "4", "8"};
      const char *string2[] = {"ulong", "uint32", "uint64"};
      const char *string3[] = {"unsigned long", "uint32_t", "uint64_t"};
      const char *string4[] = {"XMDSSwapInt32", "XMDSSwapInt32", "XMDSSwapInt64"};
      for (int i=0; i<3; i++) {
        fprintf(outfile, "\t\t\t case %s:\n"
                "\t\t\t\t fread(&size.%s, sizeof(%s), 1, inputFile);\n"
                "\t\t\t\t if (dataEncodingIsNative)\n"
                "\t\t\t\t\t sizeValue = size.%s;\n"
                "\t\t\t\t else\n"
                "\t\t\t\t\t sizeValue = %s(size.%s);\n"
                "\t\t\t\t unsignedLongSize = sizeof(%s);\n"
                "\t\t\t\t break;\n\n",
                string1[i], string2[i], string3[i], string2[i], string4[i], string2[i], string3[i]);
      }
      fprintf(outfile, "\t\t }\n");         // Read in the data (in either double or single precision)
      fprintf(outfile, "\t\t if (isPrecisionDouble) {\n"
              "\t\t\t inputData[__i].doublePtr = new double[sizeValue];\n"
              "\t\t\t fread(inputData[__i].doublePtr, sizeof(double), sizeValue, inputFile);\n"
              "\t\t\t if (!dataEncodingIsNative) {\n"
              "\t\t\t\t for (int j=0; j<sizeValue; j++)\n"
              "\t\t\t\t\t inputData[__i].doublePtr[j] = XMDSSwapDouble(inputData[__i].doublePtr[j]);\n"
              "\t\t\t }\n"
              "\t\t }\n"
              "\t\t else {\n"
              "\t\t\t inputData[__i].floatPtr = new float[sizeValue];\n"
              "\t\t\t fread(inputData[__i].floatPtr, sizeof(float), sizeValue, inputFile);\n"
              "\t\t\t if (!dataEncodingIsNative) {\n"
              "\t\t\t\t for (int j=0; j<sizeValue; j++)\n"
              "\t\t\t\t\t inputData[__i].floatPtr[j] = XMDSSwapFloat(inputData[__i].floatPtr[j]);\n"
              "\t\t\t }\n"
              "\t\t }\n"
              //               "\t\t printf(\"We loaded dimension %%i with %%lu points\\n\", i, sizeValue);\n"
              "\t }\n"
              "// Assert that the deltas are the same up to 1%%\n"    // One restriction on the XSIL input is that the grid spacing must be the same
              "\t for (int __i=0; __i<_%s_ndims; __i++) {\n" // field name
              "\t\t double difference;\n"
              "\t\t if (isPrecisionDouble)\n"
              "\t\t\t difference = inputData[__i].doublePtr[1] - inputData[__i].doublePtr[0];\n"
              "\t\t else\n"
              "\t\t\t difference = inputData[__i].floatPtr[1] - inputData[__i].floatPtr[0];\n"
              "\t\t if (fabs(dimDelta[__i] - difference) > 0.01*dimDelta[__i]) {\n"
              "\t\t\t printf(\"The step size in the '%%s' dimension of the input data and the simulation grid do not match\\n\", dimNames[__i]);\n"
              "\t\t\t printf(\"The step size in the '%%s' dimension was %%e, while the input data had a step size of %%e\\n\", dimNames[__i], dimDelta[__i], difference);\n"
              "\t\t\t exit(1);\n"
              "\t\t }\n"
              "\t\t else {\n"
              //               "\t\t\t printf(\"Step requirement succeeded. Field delta: %%e, input delta: %%e\\n\", dimDelta[__i], difference);\n"
              "\t\t }\n"
              "\t }\n", fieldName);
      // In strict mode we require that the grid be exactly the same
      if (isGeometryMatchingModeStrict) {
        fprintf(outfile, "// STRICT MODE: assert that the start point is the same to within 10%% of one delta, and that the number of lattice points is the same\n"
                "\t for (int __i=0; __i<_%s_ndims; __i++) {\n" // field name
                "\t\t double start;\n"
                "\t\t if (isPrecisionDouble)\n"
                "\t\t\t start = inputData[__i].doublePtr[0];\n"
                "\t\t else\n"
                "\t\t\t start = inputData[__i].floatPtr[0];\n\n"
                "\t\t if (fabs(dimMin[__i] - start) > dimDelta[__i]/10) {\n"
                "\t\t\t printf(\"Geometry matching mode is strict, so the starting coordinate of each dimension in the field must be the same as in the input grid\\n\");\n"
                "\t\t\t printf(\"The problem is with dimension '%%s'\\n\", dimNames[__i]);\n"
                "\t\t\t exit(1);\n"
                "\t\t }\n"
                "\t\t if (dimLattice[__i] != inputLattice[__i]) {\n"
                "\t\t\t printf(\"Geometry matching mode is strict, so the number of lattice points in each dimension of the field must be the same as in the input grid\\n\");\n"
                "\t\t\t printf(\"The problem is with dimension '%%s'\\n\", dimNames[__i]);\n"
                "\t\t\t exit(1);\n"
                "\t\t }\n"
                "\t }\n\n", fieldName);
      }

      fprintf(outfile, "long binaryFileBaseOffset = ftell(inputFile);\n");
      fprintf(outfile, "long realNumberSize = isPrecisionDouble ? sizeof(double) : sizeof(float);\n");
      fprintf(outfile, "off_t vectorFieldSize = unsignedLongSize + realNumberSize");
      for (long unsigned int i=0; i<field()->geometry()->nDims(); i++) {
        fprintf(outfile, " * inputLattice[%li]", i);
      }
      fprintf(outfile, ";\n");

      // Transform vectors to appropriate space
      field()->vectors2space(outfile, initialSpace(), myVectorNamesList, "");

      // I'm honestly not sure why this code is here
      list<XMLString> vectorNameList = myVectorNamesList;
      vectorNameList.push_back(*name());

      // Create minimum variables for x-space dimensions
      for (long unsigned int i=0; i<field()->geometry()->nDims(); i++) {
        if ((initialSpace()>>i)&1)
          continue;

        fprintf(outfile, "double _inputfield_min%1$li;\n"
                "if (isPrecisionDouble)\n"
                "\t _inputfield_min%1$li = inputData[%1$li].doublePtr[0];\n"
                "else\n"
                "\t _inputfield_min%1$li = inputData[%1$li].floatPtr[0];\n\n",
                i);
      }

      fprintf(outfile, "{ // Put the loop in a block\n");
      field()->openLoops(outfile, initialSpace(), vectorNameList, PARALLELISE_LOOP);
      if (simulation()->parameters()->stochastic) {
        if (simulation()->parameters()->errorCheck) {
          if (simulation()->parameters()->noiseKind == "poissonian") {
            fprintf(outfile, "_make_noises(_gen1, _var/2, 0, _noises, _n_noises);\n");
            fprintf(outfile, "_make_noises(_gen2, _var/2, 0, _noises2, _n_noises);\n");
          }
          else {
            fprintf(outfile, "_make_noises(_gen1, _var/2, _noises, _n_noises);\n");
            fprintf(outfile, "_make_noises(_gen2, _var/2, _noises2, _n_noises);\n");
          }
          fprintf(outfile, "for (unsigned long _s0=0; _s0<_n_noises; _s0++)\n");
          fprintf(outfile, " _noises[_s0] += _noises2[_s0];\n");
          fprintf(outfile, "\n");
        }
        else {
          if (simulation()->parameters()->noiseKind == "poissonian") {
            fprintf(outfile, "_make_noises(_gen, _var, 0, _noises, _n_noises);\n");
          }
          else {
            fprintf(outfile, "_make_noises(_gen, _var, _noises, _n_noises);\n");
          }
          fprintf(outfile, "\n");
        }
      }

      // Set the input field index pointer from the grid coordinates

      // Initialise the components to zero
      fprintf(outfile, "for (unsigned int _component=0; _component<_%1$s_%2$s_ncomponents; _component++)\n"
              "\t _%1$s_%2$s[_%1$s_%2$s_index_pointer+_component] = 0.0;\n\n", fieldName, vectorName);
      // Include any initialisation code, if it exists
      if (!myCode.isAllWhiteSpace()) {
        fprintf(outfile, "// ********** Code from vector element***********\n");
        fprintf(outfile, "%s\n", myCode.c_str());
        fprintf(outfile, "// **********************************************\n");
        fprintf(outfile, "\n");
      }
      // Of course, initialisation code is only used if the input grid doesn't specify a value there.
      // This is so, if for some bizarre reason, a vector needs to be set to '1' (or something else) outside the input grid...
      // If you want to do something where you override the input data, then that can be done easily enough with a filter element
      // at the start of the simulation.

      field()->closeLoops(outfile, initialSpace(), vectorNameList);
      fprintf(outfile, "} // End block for loop\n");


      // Index pointer into the input array (new and old)
      fprintf(outfile, "off_t _inputfield_index_pointer, _inputfield_old_index_pointer;\n");

      fprintf(outfile, "for (unsigned int _component=0; _component<%i; _component++) {\n"
              "\tif (componentInputIndices[_component] == -1)\n"
              "\t\tcontinue;\n\n"
              "_inputfield_index_pointer = -42; // Just so that we always seek the first time\n",
              vectorType() == DOUBLE ? vectorComponents : 2*vectorComponents);

      field()->openLoops(outfile, initialSpace(), vectorNameList, DO_NOT_PARALLELISE_LOOP);

      // Save the old index pointer, and clear the new one
      fprintf(outfile, "_inputfield_old_index_pointer = _inputfield_index_pointer;\n"
              "_inputfield_index_pointer = 0;\n\n");


      for (long unsigned int i=0; i<field()->geometry()->nDims(); i++)
        fprintf(outfile, "long _inputfield_i%li;\n", i);

      for (long unsigned int i=0; i<field()->geometry()->nDims(); i++) {
        string dimName;
        if (!((initialSpace()>>i)&1)) {
          // x space
          dimName = field()->geometry()->dimension(i)->name.c_str();
          fprintf(outfile, "_inputfield_i%1$li = lround((%2$s - _inputfield_min%1$li)/dimDelta[%1$li]);\n\n",
                  i, dimName.c_str());
        }
        else {
          // k space
          dimName = string("k") + field()->geometry()->dimension(i)->name.c_str();
          fprintf(outfile, "_inputfield_i%1$li = lround(%2$s/dimDelta[%1$li]) + (inputLattice[%1$li]/2);\n",
                  i, dimName.c_str());
        }

        // check to see if the input grid has this coordinate value
        fprintf(outfile, "if (_inputfield_i%1$li < 0 || _inputfield_i%1$li >= inputLattice[%1$li])\n"
                "// The input grid doesn't cover this point\n"
                "\t goto ENDLOOP;\n\n", i);

        // check that the input coordinate matches up with the field coordinate
        fprintf(outfile, "{\n\tdouble _inputfield_%1$s;\n"
                "\tif (isPrecisionDouble)\n"
                "\t\t _inputfield_%1$s = inputData[%2$li].doublePtr[_inputfield_i%2$li];\n"
                "\telse\n"
                "\t\t _inputfield_%1$s = inputData[%2$li].floatPtr[_inputfield_i%2$li];\n\n"
                "\tif (fabs(_inputfield_%1$s - %1$s) > dimDelta[%2$li]/10) {\n"
                "\t// This only happens if your input field grid does not exactly match up with the simulation grid\n"
                "\t\t printf(\"The input field coordinate in the '%1$s' dimension does not match up with the field coordinate\\n\");\n"
                "\t\t printf(\"_i%2$li: %%li, %1$s: %%e, _inputfield_i%2$li: %%li, _inputfield_%1$s: %%e, d%1$s: %%e, diff/Delta: %%e\\n\", \n"
                "\t\t\t\t\t\t  _i%2$li, %1$s, _inputfield_i%2$li, _inputfield_%1$s, dimDelta[%2$li], fabs(_inputfield_%1$s - %1$s)/dimDelta[%2$li]);\n"
                "\t\t exit(1);\n"
                "\t}\n}\n\n",
                dimName.c_str(), i);

        // Calculate the input field index pointer
        fprintf(outfile, "_inputfield_index_pointer += _inputfield_i%li", i);
        for (long unsigned int j=i+1; j<field()->geometry()->nDims(); j++) {
          fprintf(outfile, "*inputLattice[%li]", j);
        }
        fprintf(outfile, ";\n\n");

      }

      fprintf(outfile, "double value;\n");
      fprintf(outfile, "if (_inputfield_index_pointer != _inputfield_old_index_pointer + 1) \n"
              "\t fseeko(inputFile, binaryFileBaseOffset + (componentInputIndices[_component]-_%s_ndims)*vectorFieldSize + \n"
              "\t\t unsignedLongSize + _inputfield_index_pointer*realNumberSize, SEEK_SET);\n", fieldName);
      fprintf(outfile, "if (isPrecisionDouble) {\n"
              "\t fread(&value, sizeof(double), 1, inputFile);\n"
              "\t if (!dataEncodingIsNative)\n"
              "\t\t value = XMDSSwapDouble(value);\n"
              " }\n"
              "\t else {\n"
              "\t float temp;\n"
              "\t fread(&temp, sizeof(float), 1, inputFile);\n"
              "\t if (!dataEncodingIsNative)\n"
              "\t\t temp = XMDSSwapFloat(temp);\n"
              "\t value = (double)temp;\n"
              " }\n");
      if (vectorType() == DOUBLE)
        fprintf(outfile, "_%1$s_%2$s[_%1$s_%2$s_index_pointer+_component] = value;\n", fieldName, vectorName);
      else // COMPLEX
        fprintf(outfile, "if (_component & 1) \n"
                "\t _%1$s_%2$s[_%1$s_%2$s_index_pointer+_component/2].im = value;\n"
                "else \n"
                "\t _%1$s_%2$s[_%1$s_%2$s_index_pointer+_component/2].re = value;\n\n", fieldName, vectorName);

      fprintf(outfile, "ENDLOOP:\n\n");
      field()->closeLoops(outfile, initialSpace(), vectorNameList);
      fprintf(outfile, "} // end loop over components \n");
      fprintf(outfile, "\t fclose(inputFile);\n"
              "\t delete [] dimNames;\n"
              "\t delete [] componentNames;\n"
              "\t free(binaryDataFilename);\n"
              "\t delete [] inputLattice;\n"
              "\t delete [] componentInputIndices;\n"
              "\t for (int i =0; i<_%s_ndims; i++) {\n"
              "\t\t if (isPrecisionDouble)\n"
              "\t\t\t delete [] inputData[i].doublePtr;\n"
              "\t\t else\n"
              "\t\t\t delete [] inputData[i].floatPtr;\n"
              "\t }\n"
              "\t delete [] inputData;\n", fieldName);
      // Delete noises (if needed)
      if (simulation()->parameters()->stochastic) {
        fprintf(outfile, "    delete[] _noises;\n");

        if (simulation()->parameters()->errorCheck) {
          fprintf(outfile, "    delete[] _noises2;\n");
        }
      }
    }
    else {
      // something must have really screwed up to get here...
      throw xmdsException("For some reason the input file is neither ascii, binary or xsil...\nHow did we get here??");
    }
  }
  else {
    // initialisation from code
    if (simulation()->parameters()->stochastic) {
      fprintf(outfile, "const double _var = 1.0");
      for (unsigned long i=0; i<nDims; i++) {
        if (space(i)) {
          fprintf(outfile, "/_%s_dk%li", fieldName, i);
        }
        else {
          fprintf(outfile, "/_%s_dx%li", fieldName, i);
        }
      }
      fprintf(outfile, ";\n");
      fprintf(outfile, "double *_noises = new double[_n_noises];\n");
      if (simulation()->parameters()->errorCheck) {
        fprintf(outfile, "double *_noises2 = new double[_n_noises];\n");
      }
      fprintf(outfile, "\n");
    }

    field()->vectors2space(outfile, initialSpace(), myVectorNamesList, "");

    list<XMLString> vectorNameList = myVectorNamesList;
    vectorNameList.push_back(*name());

    // The code could be doing anything, let's be safe
    field()->openLoops(outfile, initialSpace(), vectorNameList, DO_NOT_PARALLELISE_LOOP);

    char indent[64];
    for (unsigned long i=0; i<nDims; i++) {
      indent[i]=0x09;
    }
    indent[nDims]=0;

    if (simulation()->parameters()->stochastic) {
      if (simulation()->parameters()->errorCheck) {
        if (simulation()->parameters()->noiseKind == "poissonian") {
          fprintf(outfile, "%s_make_noises(_gen1, _var/2, 0, _noises, _n_noises);\n", indent);
          fprintf(outfile, "%s_make_noises(_gen2, _var/2, 0, _noises2, _n_noises);\n", indent);
        }
        else {
          fprintf(outfile, "%s_make_noises(_gen1, _var/2, _noises, _n_noises);\n", indent);
          fprintf(outfile, "%s_make_noises(_gen2, _var/2, _noises2, _n_noises);\n", indent);
        }
        fprintf(outfile, "%sfor (unsigned long _s0=0; _s0<_n_noises; _s0++)\n", indent);
        fprintf(outfile, "%s _noises[_s0] += _noises2[_s0];\n", indent);
        fprintf(outfile, "\n");
      }
      else {
        if (simulation()->parameters()->noiseKind == "poissonian") {
          fprintf(outfile, "%s_make_noises(_gen, _var, 0, _noises, _n_noises);\n", indent);
        }
        else {
          fprintf(outfile, "%s_make_noises(_gen, _var, _noises, _n_noises);\n", indent);
        }
        fprintf(outfile, "\n");
      }
    }

    fprintf(outfile, "// ********** Code from vector element***********\n");
    fprintf(outfile, "%s\n", myCode.c_str());
    fprintf(outfile, "// **********************************************\n");
    fprintf(outfile, "\n");

    field()->closeLoops(outfile, initialSpace(), vectorNameList);

    if (simulation()->parameters()->stochastic) {
      fprintf(outfile, "    delete[] _noises;\n");

      if (simulation()->parameters()->errorCheck) {
        fprintf(outfile, "    delete[] _noises2;\n");
      }
    }

  }

  if (needsFFTWRoutines()) {
    fprintf(outfile, "\n");
    fprintf(outfile, "_%s_%s_space=%li;\n", field()->name()->c_str(), name()->c_str(), initialSpace());
  }

  fprintf(outfile, "}\n");
  fprintf(outfile, "\n");
}

/*
 * Local variables:
 * c-indentation-style: bsd
 * c-basic-offset: 2
 * indent-tabs-mode: nil
 * End:
 *
 * vim: tabstop=2 expandtab shiftwidth=2:
 */