1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Worked Examples — XMDS2 2.2.2 documentation</title>
<link rel="stylesheet" href="_static/default.css" type="text/css" />
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT: './',
VERSION: '2.2.2',
COLLAPSE_INDEX: false,
FILE_SUFFIX: '.html',
HAS_SOURCE: true
};
</script>
<script type="text/javascript" src="_static/jquery.js"></script>
<script type="text/javascript" src="_static/underscore.js"></script>
<script type="text/javascript" src="_static/doctools.js"></script>
<script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS_HTML,http://www.xmds.org/_static/mathjax-use-tex-fonts.js"></script>
<link rel="shortcut icon" href="_static/xmds_favicon.ico"/>
<link rel="top" title="XMDS2 2.2.2 documentation" href="index.html" />
<link rel="next" title="Reference section" href="reference_index.html" />
<link rel="prev" title="Quickstart Tutorial" href="tutorial.html" />
</head>
<body>
<div class="related">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
accesskey="I">index</a></li>
<li class="right" >
<a href="reference_index.html" title="Reference section"
accesskey="N">next</a> |</li>
<li class="right" >
<a href="tutorial.html" title="Quickstart Tutorial"
accesskey="P">previous</a> |</li>
<li><a href="index.html">XMDS2 2.2.2 documentation</a> »</li>
</ul>
</div>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body">
<div class="section" id="worked-examples">
<span id="workedexamples"></span><span id="index-0"></span><h1>Worked Examples<a class="headerlink" href="#worked-examples" title="Permalink to this headline">¶</a></h1>
<p>One of the best ways to learn XMDS2 is to see several illustrative examples. Here are a set of example scripts and explanations of the code, which will be a good way to get started. As an instructional aid, they are meant to be read sequentially, but the adventurous could try starting with one that looked like a simulation they wanted to run, and adapt for their own purposes.</p>
<blockquote>
<div><p><a class="reference internal" href="#nonlinearschrodingerequation"><em>The nonlinear Schrödinger equation</em></a> (partial differential equation)</p>
<p><a class="reference internal" href="#kubo"><em>Kubo Oscillator</em></a> (stochastic differential equations)</p>
<p><a class="reference internal" href="#fibre"><em>Fibre Noise</em></a> (stochastic partial differential equation using parallel processing)</p>
<p><a class="reference internal" href="#integerdimensionexample"><em>Integer Dimensions</em></a> (integer dimensions)</p>
<p><a class="reference internal" href="#wignerarguments"><em>Wigner Function</em></a> (two dimensional PDE using parallel processing, passing arguments in at run time)</p>
<p><a class="reference internal" href="#groundstatebec"><em>Finding the Ground State of a BEC (continuous renormalisation)</em></a> (PDE with continual renormalisation - computed vectors, filters, breakpoints)</p>
<p><a class="reference internal" href="#hermitegaussgroundstatebec"><em>Finding the Ground State of a BEC again</em></a> (Hermite-Gaussian basis)</p>
<p><a class="reference internal" href="#dmultistatese"><em>Multi-component Schrödinger equation</em></a> (combined integer and continuous dimensions with matrix multiplication, aliases)</p>
</div></blockquote>
<p>All of these scripts are available in the included “examples” folder, along with more examples that demonstrate other tricks. Together, they provide starting points for a huge range of different simulations.</p>
<div class="section" id="the-nonlinear-schrodinger-equation">
<span id="nonlinearschrodingerequation"></span><span id="index-1"></span><h2>The nonlinear Schrödinger equation<a class="headerlink" href="#the-nonlinear-schrodinger-equation" title="Permalink to this headline">¶</a></h2>
<p>This worked example will show a range of new features that can be used in an <strong>XMDS2</strong> script, and we will also examine our first partial differential equation. We will take the one dimensional nonlinear Schrödinger equation, which is a common nonlinear wave equation. The equation describing this problem is:</p>
<div class="math">
\[\frac{\partial \phi}{\partial \xi} = \frac{i}{2}\frac{\partial^2 \phi}{\partial \tau^2} - \Gamma(\tau)\phi+i|\phi|^2 \phi\]</div>
<p>where <span class="math">\(\phi\)</span> is a complex-valued field, and <span class="math">\(\Gamma(\tau)\)</span> is a <span class="math">\(\tau\)</span>-dependent damping term. Let us look at an XMDS2 script that integrates this equation, and then examine it in detail.</p>
<div class="highlight-xpdeint"><div class="highlight"><pre><span class="nt"><simulation</span> <span class="na">xmds-version=</span><span class="s">"2"</span><span class="nt">></span>
<span class="nt"><name></span>nlse<span class="nt"></name></span>
<span class="nt"><author></span>Joe Hope<span class="nt"></author></span>
<span class="nt"><description></span>
The nonlinear Schrodinger equation in one dimension,
which is a simple partial differential equation.
We introduce several new features in this script.
<span class="nt"></description></span>
<span class="nt"><features></span>
<span class="nt"><benchmark</span> <span class="nt">/></span>
<span class="nt"><bing</span> <span class="nt">/></span>
<span class="nt"><fftw</span> <span class="na">plan=</span><span class="s">"patient"</span> <span class="nt">/></span>
<span class="nt"><openmp</span> <span class="nt">/></span>
<span class="nt"><auto_vectorise</span> <span class="nt">/></span>
<span class="nt"><globals></span>
<span class="cp"><![CDATA[</span>
<span class="k">const</span> <span class="kt">double</span> <span class="n">energy</span> <span class="o">=</span> <span class="mi">4</span><span class="p">;</span>
<span class="k">const</span> <span class="kt">double</span> <span class="n">vel</span> <span class="o">=</span> <span class="mf">0.3</span><span class="p">;</span>
<span class="k">const</span> <span class="kt">double</span> <span class="n">hwhm</span> <span class="o">=</span> <span class="mf">1.0</span><span class="p">;</span>
<span class="cp">]]></span>
<span class="nt"></globals></span>
<span class="nt"></features></span>
<span class="nt"><geometry></span>
<span class="nt"><propagation_dimension></span> xi <span class="nt"></propagation_dimension></span>
<span class="nt"><transverse_dimensions></span>
<span class="nt"><dimension</span> <span class="na">name=</span><span class="s">"tau"</span> <span class="na">lattice=</span><span class="s">"128"</span> <span class="na">domain=</span><span class="s">"(-6, 6)"</span> <span class="nt">/></span>
<span class="nt"></transverse_dimensions></span>
<span class="nt"></geometry></span>
<span class="nt"><vector</span> <span class="na">name=</span><span class="s">"wavefunction"</span> <span class="na">type=</span><span class="s">"complex"</span> <span class="na">dimensions=</span><span class="s">"tau"</span><span class="nt">></span>
<span class="nt"><components></span> phi <span class="nt"></components></span>
<span class="nt"><initialisation></span>
<span class="cp"><![CDATA[</span>
<span class="k">const</span> <span class="kt">double</span> <span class="n">w0</span> <span class="o">=</span> <span class="n">hwhm</span><span class="o">*</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">/</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">));</span>
<span class="k">const</span> <span class="kt">double</span> <span class="n">amp</span> <span class="o">=</span> <span class="n">sqrt</span><span class="p">(</span><span class="n">energy</span><span class="o">/</span><span class="n">w0</span><span class="o">/</span><span class="n">sqrt</span><span class="p">(</span><span class="n">M_PI</span><span class="o">/</span><span class="mi">2</span><span class="p">));</span>
<span class="n">phi</span> <span class="o">=</span> <span class="n">amp</span><span class="o">*</span><span class="n">exp</span><span class="p">(</span><span class="o">-</span><span class="n">tau</span><span class="o">*</span><span class="n">tau</span><span class="o">/</span><span class="n">w0</span><span class="o">/</span><span class="n">w0</span><span class="p">)</span><span class="o">*</span><span class="n">exp</span><span class="p">(</span><span class="kc">i</span><span class="o">*</span><span class="n">vel</span><span class="o">*</span><span class="n">tau</span><span class="p">);</span>
<span class="cp">]]></span>
<span class="nt"></initialisation></span>
<span class="nt"></vector></span>
<span class="nt"><vector</span> <span class="na">name=</span><span class="s">"dampingVector"</span> <span class="na">type=</span><span class="s">"real"</span><span class="nt">></span>
<span class="nt"><components></span> Gamma <span class="nt"></components></span>
<span class="nt"><initialisation></span>
<span class="cp"><![CDATA[</span>
<span class="n">Gamma</span><span class="o">=</span><span class="mf">1.0</span><span class="o">*</span><span class="p">(</span><span class="mi">1</span><span class="o">-</span><span class="n">exp</span><span class="p">(</span><span class="o">-</span><span class="n">pow</span><span class="p">(</span><span class="n">tau</span><span class="o">*</span><span class="n">tau</span><span class="o">/</span><span class="mf">4.0</span><span class="o">/</span><span class="mf">4.0</span><span class="p">,</span><span class="mi">10</span><span class="p">)));</span>
<span class="cp">]]></span>
<span class="nt"></initialisation></span>
<span class="nt"></vector></span>
<span class="nt"><sequence></span>
<span class="nt"><integrate</span> <span class="na">algorithm=</span><span class="s">"ARK45"</span> <span class="na">interval=</span><span class="s">"20.0"</span> <span class="na">tolerance=</span><span class="s">"1e-7"</span><span class="nt">></span>
<span class="nt"><samples></span>10 100 10<span class="nt"></samples></span>
<span class="nt"><operators></span>
<span class="nt"><integration_vectors></span>wavefunction<span class="nt"></integration_vectors></span>
<span class="nt"><operator</span> <span class="na">kind=</span><span class="s">"ex"</span><span class="nt">></span>
<span class="nt"><operator_names></span>Ltt<span class="nt"></operator_names></span>
<span class="cp"><![CDATA[</span>
<span class="n">Ltt</span> <span class="o">=</span> <span class="o">-</span><span class="kc">i</span><span class="o">*</span><span class="n">ktau</span><span class="o">*</span><span class="n">ktau</span><span class="o">*</span><span class="mf">0.5</span><span class="p">;</span>
<span class="cp">]]></span>
<span class="nt"></operator></span>
<span class="cp"><![CDATA[</span>
<span class="n">dphi_dxi</span> <span class="o">=</span> <span class="n">Ltt</span><span class="p">[</span><span class="n">phi</span><span class="p">]</span> <span class="o">-</span> <span class="n">phi</span><span class="o">*</span><span class="n">Gamma</span> <span class="o">+</span> <span class="kc">i</span><span class="o">*</span><span class="nf">mod2</span><span class="p">(</span><span class="n">phi</span><span class="p">)</span><span class="o">*</span><span class="n">phi</span><span class="p">;</span>
<span class="cp">]]></span>
<span class="nt"><dependencies></span>dampingVector<span class="nt"></dependencies></span>
<span class="nt"></operators></span>
<span class="nt"></integrate></span>
<span class="nt"></sequence></span>
<span class="nt"><output></span>
<span class="nt"><sampling_group</span> <span class="na">basis=</span><span class="s">"tau"</span> <span class="na">initial_sample=</span><span class="s">"yes"</span><span class="nt">></span>
<span class="nt"><moments></span>density<span class="nt"></moments></span>
<span class="nt"><dependencies></span>wavefunction<span class="nt"></dependencies></span>
<span class="cp"><![CDATA[</span>
<span class="n">density</span> <span class="o">=</span> <span class="nf">mod2</span><span class="p">(</span><span class="n">phi</span><span class="p">);</span>
<span class="cp">]]></span>
<span class="nt"></sampling_group></span>
<span class="nt"><sampling_group</span> <span class="na">basis=</span><span class="s">"tau(0)"</span> <span class="na">initial_sample=</span><span class="s">"yes"</span><span class="nt">></span>
<span class="nt"><moments></span>normalisation<span class="nt"></moments></span>
<span class="nt"><dependencies></span>wavefunction<span class="nt"></dependencies></span>
<span class="cp"><![CDATA[</span>
<span class="n">normalisation</span> <span class="o">=</span> <span class="nf">mod2</span><span class="p">(</span><span class="n">phi</span><span class="p">);</span>
<span class="cp">]]></span>
<span class="nt"></sampling_group></span>
<span class="nt"><sampling_group</span> <span class="na">basis=</span><span class="s">"ktau(32)"</span> <span class="na">initial_sample=</span><span class="s">"yes"</span><span class="nt">></span>
<span class="nt"><moments></span>densityK<span class="nt"></moments></span>
<span class="nt"><dependencies></span>wavefunction<span class="nt"></dependencies></span>
<span class="cp"><![CDATA[</span>
<span class="n">densityK</span> <span class="o">=</span> <span class="nf">mod2</span><span class="p">(</span><span class="n">phi</span><span class="p">);</span>
<span class="cp">]]></span>
<span class="nt"></sampling_group></span>
<span class="nt"></output></span>
<span class="nt"></simulation></span>
</pre></div>
</div>
<p>Let us examine the new items in the <tt class="docutils literal"><span class="pre"><features></span></tt> element that we have demonstrated here. The existence of the <tt class="docutils literal"><span class="pre"><benchmark></span></tt> element causes the simulation to be timed. The <tt class="docutils literal"><span class="pre"><bing></span></tt> element causes the computer to make a sound upon the conclusion of the simulation. The <tt class="docutils literal"><span class="pre"><fftw></span></tt> element is used to pass options to the <a class="reference external" href="http://fftw.org">FFTW libraries for fast Fourier transforms</a>, which are needed to do spectral derivatives for the partial differential equation. Here we used the option <cite>plan=”patient”</cite>, which makes the simulation test carefully to find the fastest method for doing the FFTs. More information on possible choices can be found in the <a class="reference external" href="http://fftw.org">FFTW documentation</a>.</p>
<p>Finally, we use two tags to make the simulation run faster. The <tt class="docutils literal"><span class="pre"><auto_vectorise></span></tt> element switches on several loop optimisations that exist in later versions of the GCC compiler. The <tt class="docutils literal"><span class="pre"><openmp></span></tt> element turns on threaded parallel processing using the OpenMP standard where possible. These options are not activated by default as they only exist on certain compilers. If your code compiles with them on, then they are recommended.</p>
<p>Let us examine the <tt class="docutils literal"><span class="pre"><geometry></span></tt> element.</p>
<div class="highlight-xpdeint"><div class="highlight"><pre><span class="nt"><geometry></span>
<span class="nt"><propagation_dimension></span> xi <span class="nt"></propagation_dimension></span>
<span class="nt"><transverse_dimensions></span>
<span class="nt"><dimension</span> <span class="na">name=</span><span class="s">"tau"</span> <span class="na">lattice=</span><span class="s">"128"</span> <span class="na">domain=</span><span class="s">"(-6, 6)"</span> <span class="nt">/></span>
<span class="nt"></transverse_dimensions></span>
<span class="nt"></geometry></span>
</pre></div>
</div>
<p>This is the first example that includes a transverse dimension. We have only one dimension, and we have labelled it “tau”. It is a continuous dimension, but only defined on a grid containing 128 points (defined with the lattice variable), and on a domain from -6 to 6. The default is that transforms in continuous dimensions are fast Fourier transforms, which means that this dimension is effectively defined on a loop, and the “tau=-6” and “tau=6” positions are in fact the same. Other transforms are possible, as are discrete dimensions such as an integer-valued index, but we will leave these advanced possibilities to later examples.</p>
<p>Two vector elements have been defined in this simulation. One defines the complex-valued wavefunction “phi” that we wish to evolve. We define the transverse dimensions over which this vector is defined by the <tt class="docutils literal"><span class="pre">dimensions</span></tt> tag in the description. By default, it is defined over all of the transverse dimensions in the <tt class="docutils literal"><span class="pre"><geometry></span></tt> element, so even though we have omitted this tag for the second vector, it also assumes that the vector is defined over all of tau.</p>
<p>The second vector element contains the component “Gamma” which is a function of the transverse variable tau, as specified in the equation of motion for the field. This second vector could have been avoided in two ways. First, the function could have been written explicitly in the integrate block where it is required, but calculating it once and then recalling it from memory is far more efficient. Second, it could have been included in the “wavefunction” vector as another component, but then it would have been unnecessarily complex-valued, it would have needed an explicit derivative in the equations of motion (presumably <tt class="docutils literal"><span class="pre">dGamma_dxi</span> <span class="pre">=</span> <span class="pre">0;</span></tt>), and it would have been Fourier transformed whenever the phi component was transformed. So separating it as its own vector is far more efficient.</p>
<p>The <tt class="docutils literal"><span class="pre"><integrate></span></tt> element for a partial differential equation has some new features:</p>
<div class="highlight-xpdeint"><div class="highlight"><pre><span class="nt"><integrate</span> <span class="na">algorithm=</span><span class="s">"ARK45"</span> <span class="na">interval=</span><span class="s">"20.0"</span> <span class="na">tolerance=</span><span class="s">"1e-7"</span><span class="nt">></span>
<span class="nt"><samples></span>10 100 10<span class="nt"></samples></span>
<span class="nt"><operators></span>
<span class="nt"><integration_vectors></span>wavefunction<span class="nt"></integration_vectors></span>
<span class="nt"><operator</span> <span class="na">kind=</span><span class="s">"ex"</span><span class="nt">></span>
<span class="nt"><operator_names></span>Ltt<span class="nt"></operator_names></span>
<span class="cp"><![CDATA[</span>
<span class="n">Ltt</span> <span class="o">=</span> <span class="o">-</span><span class="kc">i</span><span class="o">*</span><span class="n">ktau</span><span class="o">*</span><span class="n">ktau</span><span class="o">*</span><span class="mf">0.5</span><span class="p">;</span>
<span class="cp">]]></span>
<span class="nt"></operator></span>
<span class="cp"><![CDATA[</span>
<span class="n">dphi_dxi</span> <span class="o">=</span> <span class="n">Ltt</span><span class="p">[</span><span class="n">phi</span><span class="p">]</span> <span class="o">-</span> <span class="n">phi</span><span class="o">*</span><span class="n">Gamma</span> <span class="o">+</span> <span class="kc">i</span><span class="o">*</span><span class="nf">mod2</span><span class="p">(</span><span class="n">phi</span><span class="p">)</span><span class="o">*</span><span class="n">phi</span><span class="p">;</span>
<span class="cp">]]></span>
<span class="nt"><dependencies></span>dampingVector<span class="nt"></dependencies></span>
<span class="nt"></operators></span>
<span class="nt"></integrate></span>
</pre></div>
</div>
<p>There are some trivial changes from the tutorial script, such as the fact that we are using the ARK45 algorithm rather than ARK89. Higher order algorithms are often better, but not always. Also, since this script has multiple output groups, we have to specify how many times each of these output groups are sampled in the <tt class="docutils literal"><span class="pre"><samples></span></tt> element, so there are three numbers there. Besides the vectors that are to be integrated, we also specify that we want to use the vector “dampingVector” during this integration. This is achieved by including the <tt class="docutils literal"><span class="pre"><dependencies></span></tt> element inside the <tt class="docutils literal"><span class="pre"><operators></span></tt> element.</p>
<p>The equation of motion as written in the CDATA block looks almost identical to our desired equation of motion, except for the term based on the second derivative, which introduces an important new concept. Inside the <tt class="docutils literal"><span class="pre"><operators></span></tt> element, we can define any number of operators. Operators are used to define functions in the transformed space of each dimension, which in this case is Fourier space. The derivative of a function is equivalent to multiplying by <span class="math">\(i*k\)</span> in Fourier space, so the <span class="math">\(\frac{i}{2}\frac{\partial^2 \phi}{\partial \tau^2}\)</span> term in our equation of motion is equivalent to multiplying by <span class="math">\(-\frac{i}{2}k_\tau^2\)</span> in Fourier space. In this example we define “Ltt” as an operator of exactly that form, and in the equation of motion it is applied to the field “phi”.</p>
<p>Operators can be explicit (<tt class="docutils literal"><span class="pre">kind="ex"</span></tt>) or in the interaction picture (<tt class="docutils literal"><span class="pre">kind="ip"</span></tt>). The interaction picture can be more efficient, but it restricts the possible syntax of the equation of motion. Safe utilisation of interaction picture operators will be described later, but for now let us emphasise that <strong>explicit operators should be used</strong> unless the user is clear what they are doing. That said, <strong>XMDS2</strong> will generate an error if the user tries to use interaction picture operators incorrectly. The <tt class="docutils literal"><span class="pre">constant="yes"</span></tt> option in the operator block means that the operator is not a function of the propagation dimension “xi”, and therefore only needs to be calculated once at the start of the simulation.</p>
<p>The output of a partial differential equation offers more possibilities than an ordinary differential equation, and we examine some in this example.</p>
<p>For vectors with transverse dimensions, we can sample functions of the vectors on the full lattice or a subset of the points. In the <tt class="docutils literal"><span class="pre"><sampling_group></span></tt> element, we must add a string called “basis” that determines the space in which each transverse dimension is to be sampled, optionally followed by the number of points to be sampled in parentheses. If the number of points is not specified, it will default to a complete sampling of all points in that dimension. If a non-zero number of points is specified, it must be a factor of the lattice size for that dimension.</p>
<div class="highlight-xpdeint"><div class="highlight"><pre><span class="nt"><sampling_group</span> <span class="na">basis=</span><span class="s">"tau"</span> <span class="na">initial_sample=</span><span class="s">"yes"</span><span class="nt">></span>
<span class="nt"><moments></span>density<span class="nt"></moments></span>
<span class="nt"><dependencies></span>wavefunction<span class="nt"></dependencies></span>
<span class="cp"><![CDATA[</span>
<span class="n">density</span> <span class="o">=</span> <span class="nf">mod2</span><span class="p">(</span><span class="n">phi</span><span class="p">);</span>
<span class="cp">]]></span>
<span class="nt"></sampling_group></span>
</pre></div>
</div>
<p>The first output group samples the mod square of the vector “phi” over the full lattice of 128 points.</p>
<p>If the lattice parameter is set to zero points, then the corresponding dimension is integrated.</p>
<div class="highlight-xpdeint"><div class="highlight"><pre><span class="nt"><sampling_group</span> <span class="na">basis=</span><span class="s">"tau(0)"</span> <span class="na">initial_sample=</span><span class="s">"yes"</span><span class="nt">></span>
<span class="nt"><moments></span>normalisation<span class="nt"></moments></span>
<span class="nt"><dependencies></span>wavefunction<span class="nt"></dependencies></span>
<span class="cp"><![CDATA[</span>
<span class="n">normalisation</span> <span class="o">=</span> <span class="nf">mod2</span><span class="p">(</span><span class="n">phi</span><span class="p">);</span>
<span class="cp">]]></span>
<span class="nt"></sampling_group></span>
</pre></div>
</div>
<p>This second output group samples the normalisation of the wavefunction <span class="math">\(\int d\tau |\phi(\tau)|^2\)</span> over the domain of <span class="math">\(\tau\)</span>. This output requires only a single real number per sample, so in the integrate element we have chosen to sample it many more times than the vectors themselves.</p>
<p>Finally, functions of the vectors can be sampled with their dimensions in Fourier space.</p>
<div class="highlight-xpdeint"><div class="highlight"><pre><span class="nt"><sampling_group</span> <span class="na">basis=</span><span class="s">"ktau(32)"</span> <span class="na">initial_sample=</span><span class="s">"yes"</span><span class="nt">></span>
<span class="nt"><moments></span>densityK<span class="nt"></moments></span>
<span class="nt"><dependencies></span>wavefunction<span class="nt"></dependencies></span>
<span class="cp"><![CDATA[</span>
<span class="n">densityK</span> <span class="o">=</span> <span class="nf">mod2</span><span class="p">(</span><span class="n">phi</span><span class="p">);</span>
<span class="cp">]]></span>
<span class="nt"></sampling_group></span>
</pre></div>
</div>
<p>The final output group above samples the mod square of the Fourier-space wavefunction phi on a sample of 32 points.</p>
</div>
<div class="section" id="kubo-oscillator">
<span id="kubo"></span><span id="index-2"></span><h2>Kubo Oscillator<a class="headerlink" href="#kubo-oscillator" title="Permalink to this headline">¶</a></h2>
<p>This example demonstrates the integration of a stochastic differential equation. We examine the Kubo oscillator, which is a complex variable whose phase is evolving according to a Wiener noise. In a suitable rotating frame, the equation of motion for the variable is</p>
<div class="math">
\[\frac{dz}{dt} = i z \;\eta\]</div>
<p>where <span class="math">\(\eta(t)\)</span> is the Wiener differential, and we interpret this as a Stratonovich equation. In other common notation, this is sometimes written:</p>
<div class="math">
\[dz = i z \;\circ dW\]</div>
<p>Most algorithms employed by XMDS require the equations to be input in the Stratonovich form. Ito differential equations can always be transformed into Stratonovich equations, and in this case the difference is equivalent to the choice of rotating frame. This equation is solved by the following XMDS2 script:</p>
<div class="highlight-xpdeint"><div class="highlight"><pre><span class="nt"><simulation</span> <span class="na">xmds-version=</span><span class="s">"2"</span><span class="nt">></span>
<span class="nt"><name></span>kubo<span class="nt"></name></span>
<span class="nt"><author></span>Graham Dennis and Joe Hope<span class="nt"></author></span>
<span class="nt"><description></span>
Example Kubo oscillator simulation
<span class="nt"></description></span>
<span class="nt"><geometry></span>
<span class="nt"><propagation_dimension></span> t <span class="nt"></propagation_dimension></span>
<span class="nt"></geometry></span>
<span class="nt"><driver</span> <span class="na">name=</span><span class="s">"multi-path"</span> <span class="na">paths=</span><span class="s">"10000"</span> <span class="nt">/></span>
<span class="nt"><features></span>
<span class="nt"><error_check</span> <span class="nt">/></span>
<span class="nt"><benchmark</span> <span class="nt">/></span>
<span class="nt"></features></span>
<span class="nt"><noise_vector</span> <span class="na">name=</span><span class="s">"drivingNoise"</span> <span class="na">dimensions=</span><span class="s">""</span> <span class="na">kind=</span><span class="s">"wiener"</span> <span class="na">type=</span><span class="s">"real"</span> <span class="na">method=</span><span class="s">"dsfmt"</span> <span class="na">seed=</span><span class="s">"314 159 276"</span><span class="nt">></span>
<span class="nt"><components></span>eta<span class="nt"></components></span>
<span class="nt"></noise_vector></span>
<span class="nt"><vector</span> <span class="na">name=</span><span class="s">"main"</span> <span class="na">type=</span><span class="s">"complex"</span><span class="nt">></span>
<span class="nt"><components></span> z <span class="nt"></components></span>
<span class="nt"><initialisation></span>
<span class="cp"><![CDATA[</span>
<span class="n">z</span> <span class="o">=</span> <span class="mf">1.0</span><span class="p">;</span>
<span class="cp">]]></span>
<span class="nt"></initialisation></span>
<span class="nt"></vector></span>
<span class="nt"><sequence></span>
<span class="nt"><integrate</span> <span class="na">algorithm=</span><span class="s">"SI"</span> <span class="na">interval=</span><span class="s">"10"</span> <span class="na">steps=</span><span class="s">"1000"</span><span class="nt">></span>
<span class="nt"><samples></span>100<span class="nt"></samples></span>
<span class="nt"><operators></span>
<span class="nt"><integration_vectors></span>main<span class="nt"></integration_vectors></span>
<span class="nt"><dependencies></span>drivingNoise<span class="nt"></dependencies></span>
<span class="cp"><![CDATA[</span>
<span class="n">dz_dt</span> <span class="o">=</span> <span class="kc">i</span><span class="o">*</span><span class="n">z</span><span class="o">*</span><span class="n">eta</span><span class="p">;</span>
<span class="cp">]]></span>
<span class="nt"></operators></span>
<span class="nt"></integrate></span>
<span class="nt"></sequence></span>
<span class="nt"><output></span>
<span class="nt"><sampling_group</span> <span class="na">initial_sample=</span><span class="s">"yes"</span><span class="nt">></span>
<span class="nt"><moments></span>zR zI<span class="nt"></moments></span>
<span class="nt"><dependencies></span>main<span class="nt"></dependencies></span>
<span class="cp"><![CDATA[</span>
<span class="n">zR</span> <span class="o">=</span> <span class="n">z</span><span class="p">.</span><span class="n">Re</span><span class="p">();</span>
<span class="n">zI</span> <span class="o">=</span> <span class="n">z</span><span class="p">.</span><span class="n">Im</span><span class="p">();</span>
<span class="cp">]]></span>
<span class="nt"></sampling_group></span>
<span class="nt"></output></span>
<span class="nt"></simulation></span>
</pre></div>
</div>
<p id="index-3">The first new item in this script is the <tt class="docutils literal"><span class="pre"><driver></span></tt> element. This element enables us to change top level management of the simulation. Without this element, XMDS2 will integrate the stochastic equation as described. With this element and the option <tt class="docutils literal"><span class="pre">name="multi-path"</span></tt>, it will integrate it multiple times, using different random numbers each time. The output will then contain the mean values and standard errors of your output variables. The number of integrations included in the averages is set with the <tt class="docutils literal"><span class="pre">paths</span></tt> variable.</p>
<p>In the <tt class="docutils literal"><span class="pre"><features></span></tt> element we have included the <tt class="docutils literal"><span class="pre"><error_check></span></tt> element. This performs the integration first with the specified number of steps (or with the specified tolerance), and then with twice the number of steps (or equivalently reduced tolerance). The output then includes the difference between the output variables on the coarse and the fine grids as the ‘error’ in the output variables. This error is particularly useful for stochastic integrations, where algorithms with adaptive step-sizes are less safe, so the number of integration steps must be user-specified.</p>
<p id="index-4">We define the stochastic elements in a simulation with the <tt class="docutils literal"><span class="pre"><noise_vector></span></tt> element.</p>
<div class="highlight-xpdeint"><div class="highlight"><pre><span class="nt"><noise_vector</span> <span class="na">name=</span><span class="s">"drivingNoise"</span> <span class="na">dimensions=</span><span class="s">""</span> <span class="na">kind=</span><span class="s">"wiener"</span> <span class="na">type=</span><span class="s">"real"</span> <span class="na">method=</span><span class="s">"dsfmt"</span> <span class="na">seed=</span><span class="s">"314 159 276"</span><span class="nt">></span>
<span class="nt"><components></span>eta<span class="nt"></components></span>
<span class="nt"></noise_vector></span>
</pre></div>
</div>
<p>This defines a vector that is used like any other, but it will be randomly generated with particular statistics and characteristics rather than initialised. The name, dimensions and type tags are defined just as for normal vectors. The names of the components are also defined in the same way. The noise is defined as a Wiener noise here (<tt class="docutils literal"><span class="pre">kind</span> <span class="pre">=</span> <span class="pre">"wiener"</span></tt>), which is a zero-mean Gaussian random noise with an average variance equal to the discretisation volume (here it is just the step size in the propagation dimension, as it is not defined over transverse dimensions). Other noise types are possible, including uniform and Poissonian noises, but we will not describe them in detail here.</p>
<p>We may also define a noise method to choose a non-default pseudo random number generator, and a seed for the random number generator. Using a seed can be very useful when debugging the behaviour of a simulation, and many compilers have pseudo-random number generators that are superior to the default option (posix).</p>
<p>The integrate block is using the semi-implicit algorithm (<tt class="docutils literal"><span class="pre">algorithm="SI"</span></tt>), which is a good default choice for stochastic problems, even though it is only second order convergent for deterministic equations. More will be said about algorithm choice later, but for now we should note that adaptive algorithms based on Runge-Kutta methods are not guaranteed to converge safely for stochastic equations. This can be particularly deceptive as they often succeed, particularly for almost any problem for which there is a known analytic solution.</p>
<p>We include elements from the noise vector in the equation of motion just as we do for any other vector. The default SI and Runge-Kutta algorithms converge to the <em>Stratonovich</em> integral. Ito stochastic equations can be converted to Stratonovich form and vice versa.</p>
<p>Executing the generated program ‘kubo’ gives slightly different output due to the “multi-path” driver.</p>
<div class="highlight-none"><div class="highlight"><pre>$ ./kubo
Beginning full step integration ...
Starting path 1
Starting path 2
... many lines omitted ...
Starting path 9999
Starting path 10000
Beginning half step integration ...
Starting path 1
Starting path 2
... many lines omitted ...
Starting path 9999
Starting path 10000
Generating output for kubo
Maximum step error in moment group 1 was 4.942549e-04
Time elapsed for simulation is: 2.71 seconds
</pre></div>
</div>
<p>The maximum step error in each moment group is given in absolute terms. This is the largest difference between the full step integration and the half step integration. While a single path might be very stochastic:</p>
<div class="figure align-center">
<img alt="_images/kuboSingle.png" src="_images/kuboSingle.png" />
<p class="caption">The mean value of the real and imaginary components of the z variable for a single path of the simulation.</p>
</div>
<p>The average over multiple paths can be increasingly smooth.</p>
<div class="figure align-center">
<img alt="_images/kubo10000.png" src="_images/kubo10000.png" />
<p class="caption">The mean and standard error of the z variable averaged over 10000 paths, as given by this simulation. It agrees within the standard error with the expected result of <span class="math">\(\exp(-t/2)\)</span>.</p>
</div>
</div>
<div class="section" id="fibre-noise">
<span id="fibre"></span><span id="index-5"></span><h2>Fibre Noise<a class="headerlink" href="#fibre-noise" title="Permalink to this headline">¶</a></h2>
<p>This simulation is a stochastic partial differential equation, in which a one-dimensional damped field is subject to a complex noise. This script can be found in <tt class="docutils literal"><span class="pre">examples/fibre.xmds</span></tt>.</p>
<div class="math">
\[\frac{\partial \psi}{\partial t} = -i \frac{\partial^2 \psi}{\partial x^2} -\gamma \psi+\beta \frac{1}{\sqrt{2}}\left(\eta_1(x)+i\eta_2(x)\right)\]</div>
<p>where the noise terms <span class="math">\(\eta_j(x,t)\)</span> are Wiener differentials and the equation is interpreted as a Stratonovich differential equation. On a finite grid, these increments have variance <span class="math">\(\frac{1}{\Delta x \Delta t}\)</span>.</p>
<div class="highlight-xpdeint"><div class="highlight"><pre><span class="nt"><simulation</span> <span class="na">xmds-version=</span><span class="s">"2"</span><span class="nt">></span>
<span class="nt"><name></span>fibre<span class="nt"></name></span>
<span class="nt"><author></span>Joe Hope and Graham Dennis<span class="nt"></author></span>
<span class="nt"><description></span>
Example fibre noise simulation
<span class="nt"></description></span>
<span class="nt"><geometry></span>
<span class="nt"><propagation_dimension></span> t <span class="nt"></propagation_dimension></span>
<span class="nt"><transverse_dimensions></span>
<span class="nt"><dimension</span> <span class="na">name=</span><span class="s">"x"</span> <span class="na">lattice=</span><span class="s">"64"</span> <span class="na">domain=</span><span class="s">"(-5, 5)"</span> <span class="nt">/></span>
<span class="nt"></transverse_dimensions></span>
<span class="nt"></geometry></span>
<span class="nt"><driver</span> <span class="na">name=</span><span class="s">"mpi-multi-path"</span> <span class="na">paths=</span><span class="s">"8"</span> <span class="nt">/></span>
<span class="nt"><features></span>
<span class="nt"><auto_vectorise</span> <span class="nt">/></span>
<span class="nt"><benchmark</span> <span class="nt">/></span>
<span class="nt"><error_check</span> <span class="nt">/></span>
<span class="nt"><globals></span>
<span class="cp"><![CDATA[</span>
<span class="k">const</span> <span class="nf">real</span> <span class="n">ggamma</span> <span class="o">=</span> <span class="mf">1.0</span><span class="p">;</span>
<span class="k">const</span> <span class="nf">real</span> <span class="n">beta</span> <span class="o">=</span> <span class="n">sqrt</span><span class="p">(</span><span class="n">M_PI</span><span class="o">*</span><span class="n">ggamma</span><span class="o">/</span><span class="mf">10.0</span><span class="p">);</span>
<span class="cp">]]></span>
<span class="nt"></globals></span>
<span class="nt"></features></span>
<span class="nt"><noise_vector</span> <span class="na">name=</span><span class="s">"drivingNoise"</span> <span class="na">dimensions=</span><span class="s">"x"</span> <span class="na">kind=</span><span class="s">"wiener"</span> <span class="na">type=</span><span class="s">"complex"</span> <span class="na">method=</span><span class="s">"dsfmt"</span> <span class="na">seed=</span><span class="s">"314 159 276"</span><span class="nt">></span>
<span class="nt"><components></span>Eta<span class="nt"></components></span>
<span class="nt"></noise_vector></span>
<span class="nt"><vector</span> <span class="na">name=</span><span class="s">"main"</span> <span class="na">initial_basis=</span><span class="s">"x"</span> <span class="na">type=</span><span class="s">"complex"</span><span class="nt">></span>
<span class="nt"><components></span>phi<span class="nt"></components></span>
<span class="nt"><initialisation></span>
<span class="cp"><![CDATA[</span>
<span class="n">phi</span> <span class="o">=</span> <span class="mf">0.0</span><span class="p">;</span>
<span class="cp">]]></span>
<span class="nt"></initialisation></span>
<span class="nt"></vector></span>
<span class="nt"><sequence></span>
<span class="nt"><integrate</span> <span class="na">algorithm=</span><span class="s">"SI"</span> <span class="na">iterations=</span><span class="s">"3"</span> <span class="na">interval=</span><span class="s">"2.5"</span> <span class="na">steps=</span><span class="s">"200000"</span><span class="nt">></span>
<span class="nt"><samples></span>50<span class="nt"></samples></span>
<span class="nt"><operators></span>
<span class="nt"><operator</span> <span class="na">kind=</span><span class="s">"ex"</span><span class="nt">></span>
<span class="nt"><operator_names></span>L<span class="nt"></operator_names></span>
<span class="cp"><![CDATA[</span>
<span class="n">L</span> <span class="o">=</span> <span class="o">-</span><span class="kc">i</span><span class="o">*</span><span class="n">kx</span><span class="o">*</span><span class="n">kx</span><span class="p">;</span>
<span class="cp">]]></span>
<span class="nt"></operator></span>
<span class="nt"><dependencies></span>drivingNoise<span class="nt"></dependencies></span>
<span class="nt"><integration_vectors></span>main<span class="nt"></integration_vectors></span>
<span class="cp"><![CDATA[</span>
<span class="n">dphi_dt</span> <span class="o">=</span> <span class="n">L</span><span class="p">[</span><span class="n">phi</span><span class="p">]</span> <span class="o">-</span> <span class="n">ggamma</span><span class="o">*</span><span class="n">phi</span> <span class="o">+</span> <span class="n">beta</span><span class="o">*</span><span class="n">Eta</span><span class="p">;</span>
<span class="cp">]]></span>
<span class="nt"></operators></span>
<span class="nt"></integrate></span>
<span class="nt"></sequence></span>
<span class="nt"><output></span>
<span class="nt"><sampling_group</span> <span class="na">basis=</span><span class="s">"kx"</span> <span class="na">initial_sample=</span><span class="s">"yes"</span><span class="nt">></span>
<span class="nt"><moments></span>pow_dens<span class="nt"></moments></span>
<span class="nt"><dependencies></span>main<span class="nt"></dependencies></span>
<span class="cp"><![CDATA[</span>
<span class="n">pow_dens</span> <span class="o">=</span> <span class="nf">mod2</span><span class="p">(</span><span class="n">phi</span><span class="p">);</span>
<span class="cp">]]></span>
<span class="nt"></sampling_group></span>
<span class="nt"></output></span>
<span class="nt"></simulation></span>
</pre></div>
</div>
<p>Note that the noise vector used in this example is complex-valued, and has the argument <tt class="docutils literal"><span class="pre">dimensions="x"</span></tt> to define it as a field of delta-correlated noises along the x-dimension.</p>
<span class="target" id="index-6"></span><p id="index-7">This simulation demonstrates the ease with which XMDS2 can be used in a parallel processing environment. Instead of using the stochastic driver “multi-path”, we simply replace it with “mpi-multi-path”. This instructs XMDS2 to write a parallel version of the program based on the widespread <a class="reference external" href="http://www.open-mpi.org/">MPI standard</a>. This protocol allows multiple processors or clusters of computers to work simultaneously on the same problem. Free open source libraries implementing this standard can be installed on a linux machine, and come standard on Mac OS X. They are also common on many supercomputer architectures. Parallel processing can also be used with deterministic problems to great effect, as discussed in the later example <a class="reference internal" href="#wignerarguments"><em>Wigner Function</em></a>.</p>
<p>Executing this program is slightly different with the MPI option. The details can change between MPI implementations, but as an example:</p>
<div class="highlight-none"><div class="highlight"><pre>$xmds2 fibre.xmds
xmds2 version 2.1 "Happy Mollusc" (r2543)
Copyright 2000-2012 Graham Dennis, Joseph Hope, Mattias Johnsson
and the xmds team
Generating source code...
... done
Compiling simulation...
... done. Type './fibre' to run.
</pre></div>
</div>
<p>Note that different compile options (and potentially a different compiler) are used by XMDS2, but this is transparent to the user. MPI simulations will have to be run using syntax that will depend on the MPI implementation. Here we show the version based on the popular open source <a class="reference external" href="http://www.open-mpi.org/">Open-MPI</a> implementation.</p>
<div class="highlight-none"><div class="highlight"><pre>$ mpirun -np 4 ./fibre
Found enlightenment... (Importing wisdom)
Planning for x <---> kx transform... done.
Beginning full step integration ...
Rank[0]: Starting path 1
Rank[1]: Starting path 2
Rank[2]: Starting path 3
Rank[3]: Starting path 4
Rank[3]: Starting path 8
Rank[0]: Starting path 5
Rank[1]: Starting path 6
Rank[2]: Starting path 7
Rank[3]: Starting path 4
Beginning half step integration ...
Rank[0]: Starting path 1
Rank[2]: Starting path 3
Rank[1]: Starting path 2
Rank[3]: Starting path 8
Rank[0]: Starting path 5
Rank[2]: Starting path 7
Rank[1]: Starting path 6
Generating output for fibre
Maximum step error in moment group 1 was 4.893437e-04
Time elapsed for simulation is: 20.99 seconds
</pre></div>
</div>
<p>In this example we used four processors. The different processors are labelled by their “Rank”, starting at zero. Because the processors are working independently, the output from the different processors can come in a randomised order. In the end, however, the .xsil and data files are constructed identically to the single processor outputs.</p>
<p>The analytic solution to the stochastic averages of this equation is given by</p>
<div class="math">
\[\langle |\psi(k,t)|^2 \rangle = \exp(-2\gamma t)|\psi(k,0)|^2 +\frac{\beta^2 L_x}{4\pi \gamma} \left(1-\exp(-2\gamma t)\right)\]</div>
<p>where <span class="math">\(L_x\)</span> is the length of the x domain. We see that a single integration of these equations is quite chaotic:</p>
<div class="figure align-center">
<img alt="_images/fibreSingle.png" src="_images/fibreSingle.png" />
<p class="caption">The momentum space density of the field as a function of time for a single path realisation.</p>
</div>
<p>while an average of 1024 paths (change <tt class="docutils literal"><span class="pre">paths="8"</span></tt> to <tt class="docutils literal"><span class="pre">paths="1024"</span></tt> in the <tt class="docutils literal"><span class="pre"><driver></span></tt> element) converges nicely to the analytic solution:</p>
<div class="figure align-center">
<img alt="_images/fibre1024.png" src="_images/fibre1024.png" />
<p class="caption">The momentum space density of the field as a function of time for an average of 1024 paths.</p>
</div>
</div>
<div class="section" id="integer-dimensions">
<span id="integerdimensionexample"></span><span id="index-8"></span><h2>Integer Dimensions<a class="headerlink" href="#integer-dimensions" title="Permalink to this headline">¶</a></h2>
<p>This example shows how to handle systems with integer-valued transverse dimensions. We will integrate the following set of equations</p>
<div class="math">
\[\frac{dx_j}{dt} = x_j \left(x_{j-1}-x_{j+1}\right)\]</div>
<p>where <span class="math">\(x_j\)</span> are complex-valued variables defined on a ring, such that <span class="math">\(j\in \{0,j_{max}\}\)</span> and the <span class="math">\(x_{j_{max}+1}\)</span> variable is identified with the variable <span class="math">\(x_{0}\)</span>, and the variable <span class="math">\(x_{-1}\)</span> is identified with the variable <span class="math">\(x_{j_{max}}\)</span>.</p>
<div class="highlight-xpdeint"><div class="highlight"><pre><span class="nt"><simulation</span> <span class="na">xmds-version=</span><span class="s">"2"</span><span class="nt">></span>
<span class="nt"><name></span>integer_dimensions<span class="nt"></name></span>
<span class="nt"><author></span>Graham Dennis<span class="nt"></author></span>
<span class="nt"><description></span>
XMDS2 script to test integer dimensions.
<span class="nt"></description></span>
<span class="nt"><features></span>
<span class="nt"><benchmark</span> <span class="nt">/></span>
<span class="nt"><error_check</span> <span class="nt">/></span>
<span class="nt"><bing</span> <span class="nt">/></span>
<span class="nt"><diagnostics</span> <span class="nt">/></span> <span class="c"><!-- This will make sure that all nonlocal accesses of dimensions are safe --></span>
<span class="nt"></features></span>
<span class="nt"><geometry></span>
<span class="nt"><propagation_dimension></span> t <span class="nt"></propagation_dimension></span>
<span class="nt"><transverse_dimensions></span>
<span class="nt"><dimension</span> <span class="na">name=</span><span class="s">"j"</span> <span class="na">type=</span><span class="s">"integer"</span> <span class="na">lattice=</span><span class="s">"5"</span> <span class="na">domain=</span><span class="s">"(0,4)"</span> <span class="nt">/></span>
<span class="nt"></transverse_dimensions></span>
<span class="nt"></geometry></span>
<span class="nt"><vector</span> <span class="na">name=</span><span class="s">"main"</span> <span class="na">type=</span><span class="s">"complex"</span><span class="nt">></span>
<span class="nt"><components></span> x <span class="nt"></components></span>
<span class="nt"><initialisation></span>
<span class="cp"><![CDATA[</span>
<span class="n">x</span> <span class="o">=</span> <span class="mf">1.0e-3</span><span class="p">;</span>
<span class="n">x</span><span class="p">(</span><span class="n">j</span> <span class="o">=></span> <span class="mi">0</span><span class="p">)</span> <span class="o">=</span> <span class="mf">1.0</span><span class="p">;</span>
<span class="cp">]]></span>
<span class="nt"></initialisation></span>
<span class="nt"></vector></span>
<span class="nt"><sequence></span>
<span class="nt"><integrate</span> <span class="na">algorithm=</span><span class="s">"ARK45"</span> <span class="na">interval=</span><span class="s">"60"</span> <span class="na">steps=</span><span class="s">"25000"</span> <span class="na">tolerance=</span><span class="s">"1.0e-9"</span><span class="nt">></span>
<span class="nt"><samples></span>1000<span class="nt"></samples></span>
<span class="nt"><operators></span>
<span class="nt"><integration_vectors></span>main<span class="nt"></integration_vectors></span>
<span class="cp"><![CDATA[</span>
<span class="kt">long</span> <span class="n">j_minus_one</span> <span class="o">=</span> <span class="p">(</span><span class="n">j</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span> <span class="o">%</span> <span class="n">_lattice_j</span><span class="p">;</span>
<span class="k">if</span> <span class="p">(</span><span class="n">j_minus_one</span> <span class="o"><</span> <span class="mi">0</span><span class="p">)</span>
<span class="n">j_minus_one</span> <span class="o">+=</span> <span class="n">_lattice_j</span><span class="p">;</span>
<span class="kt">long</span> <span class="n">j_plus_one</span> <span class="o">=</span> <span class="p">(</span><span class="n">j</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span> <span class="o">%</span> <span class="n">_lattice_j</span><span class="p">;</span>
<span class="n">dx_dt</span><span class="p">(</span><span class="n">j</span> <span class="o">=></span> <span class="n">j</span><span class="p">)</span> <span class="o">=</span> <span class="n">x</span><span class="p">(</span><span class="n">j</span> <span class="o">=></span> <span class="n">j</span><span class="p">)</span><span class="o">*</span><span class="p">(</span><span class="n">x</span><span class="p">(</span><span class="n">j</span> <span class="o">=></span> <span class="n">j_minus_one</span><span class="p">)</span> <span class="o">-</span> <span class="n">x</span><span class="p">(</span><span class="n">j</span> <span class="o">=></span> <span class="n">j_plus_one</span><span class="p">));</span>
<span class="cp">]]></span>
<span class="nt"></operators></span>
<span class="nt"></integrate></span>
<span class="nt"></sequence></span>
<span class="nt"><output></span>
<span class="nt"><sampling_group</span> <span class="na">basis=</span><span class="s">"j"</span> <span class="na">initial_sample=</span><span class="s">"yes"</span><span class="nt">></span>
<span class="nt"><moments></span>xR<span class="nt"></moments></span>
<span class="nt"><dependencies></span>main<span class="nt"></dependencies></span>
<span class="cp"><![CDATA[</span>
<span class="n">xR</span> <span class="o">=</span> <span class="n">x</span><span class="p">.</span><span class="n">Re</span><span class="p">();</span>
<span class="cp">]]></span>
<span class="nt"></sampling_group></span>
<span class="nt"></output></span>
<span class="nt"></simulation></span>
</pre></div>
</div>
<p>The first extra feature we have used in this script is the <tt class="docutils literal"><span class="pre"><diagnostics></span></tt> element. It performs run-time checking that our generated code does not accidentally attempt to access a part of our vector that does not exist. Removing this tag will increase the speed of the simulation, but its presence helps catch coding errors.</p>
<p>The simulation defines a vector with a single transverse dimension labelled “j”, of type “integer” (“int” and “long” can also be used as synonyms for “integer”). In the absence of an explicit type, the dimension is assumed to be real-valued. The dimension has a “domain” argument as normal, defining the minimum and maximum values of the dimension’s range. The lattice element, if specified, is used as a check on the size of the domain, and will create an error if the two do not match.</p>
<p>Integer-valued dimensions can be called non-locally. Real-valued dimensions are typically coupled non-locally only through local operations in the transformed space of the dimension, but can be called non-locally in certain other situations as described in <a class="reference internal" href="reference_elements.html#referencingnonlocal"><em>the reference</em></a>. The syntax for calling integer dimensions non-locally can be seen in the initialisation CDATA block:</p>
<div class="highlight-xpdeint"><div class="highlight"><pre>x = 1.0e-3;
x(j => 0) = 1.0;
</pre></div>
</div>
<p>where the syntax <tt class="docutils literal"><span class="pre">x(j</span> <span class="pre">=></span> <span class="pre">0)</span></tt> is used to reference the variable <span class="math">\(x_0\)</span> directly. We see a more elaborate example in the integrate CDATA block:</p>
<div class="highlight-xpdeint"><div class="highlight"><pre>dx_dt(j => j) = x(j => j)*(x(j => j_minus_one) - x(j => j_plus_one));
</pre></div>
</div>
<p>where the vector “x” is called using locally defined variables. This syntax is chosen so that multiple dimensions can be addressed non-locally with minimal possibility for confusion.</p>
</div>
<div class="section" id="wigner-function">
<span id="wignerarguments"></span><h2>Wigner Function<a class="headerlink" href="#wigner-function" title="Permalink to this headline">¶</a></h2>
<p>This example integrates the two-dimensional partial differential equation</p>
<div class="math">
\[\begin{split}\begin{split}
\frac{\partial W}{\partial t} &= \Bigg[ \left(\omega + \frac{U_{int}}{\hbar}\left(x^2+y^2-1\right)\right) \left(x \frac{\partial}{\partial y}
- y \frac{\partial}{\partial x}\right)\\
&\phantom{=\Bigg[} - \frac{U_{int}}{16 \hbar}\left(x\left(\frac{\partial^3}{\partial x^2 \partial y}
+\frac{\partial^3}{\partial y^3}\right)-y\left(\frac{\partial^3}{\partial y^2 \partial x}+\frac{\partial^3}{\partial x^3}\right)\right)\Bigg]W(x,y,t)
\end{split}\end{split}\]</div>
<p>with the added restriction that the derivative is forced to zero outside a certain radius. This extra condition helps maintain the long-term stability of the integration. The script can be found in <tt class="docutils literal"><span class="pre">examples/wigner_arguments_mpi.xmds</span></tt> under your XMDS2 installation directory.</p>
<div class="highlight-xpdeint"><div class="highlight"><pre><span class="nt"><simulation</span> <span class="na">xmds-version=</span><span class="s">"2"</span><span class="nt">></span>
<span class="nt"><name></span>wigner<span class="nt"></name></span>
<span class="nt"><author></span>Graham Dennis and Joe Hope<span class="nt"></author></span>
<span class="nt"><description></span>
Simulation of the Wigner function for an anharmonic oscillator with the initial state
being a coherent state.
<span class="nt"></description></span>
<span class="nt"><features></span>
<span class="nt"><benchmark</span> <span class="nt">/></span>
<span class="nt"><globals></span>
<span class="cp"><![CDATA[</span>
<span class="nf">real</span> <span class="n">Uint_hbar_on16</span><span class="p">;</span>
<span class="cp">]]></span>
<span class="nt"></globals></span>
<span class="nt"><arguments></span>
<span class="nt"><argument</span> <span class="na">name=</span><span class="s">"omega"</span> <span class="na">type=</span><span class="s">"real"</span> <span class="na">default_value=</span><span class="s">"0.0"</span> <span class="nt">/></span>
<span class="nt"><argument</span> <span class="na">name=</span><span class="s">"alpha_0"</span> <span class="na">type=</span><span class="s">"real"</span> <span class="na">default_value=</span><span class="s">"3.0"</span> <span class="nt">/></span>
<span class="nt"><argument</span> <span class="na">name=</span><span class="s">"absorb"</span> <span class="na">type=</span><span class="s">"real"</span> <span class="na">default_value=</span><span class="s">"8.0"</span> <span class="nt">/></span>
<span class="nt"><argument</span> <span class="na">name=</span><span class="s">"width"</span> <span class="na">type=</span><span class="s">"real"</span> <span class="na">default_value=</span><span class="s">"0.3"</span> <span class="nt">/></span>
<span class="nt"><argument</span> <span class="na">name=</span><span class="s">"Uint_hbar"</span> <span class="na">type=</span><span class="s">"real"</span> <span class="na">default_value=</span><span class="s">"1.0"</span> <span class="nt">/></span>
<span class="cp"><![CDATA[</span>
<span class="cm">/* derived constants */</span>
<span class="n">Uint_hbar_on16</span> <span class="o">=</span> <span class="n">Uint_hbar</span><span class="o">/</span><span class="mf">16.0</span><span class="p">;</span>
<span class="cp">]]></span>
<span class="nt"></arguments></span>
<span class="nt"><bing</span> <span class="nt">/></span>
<span class="nt"><fftw</span> <span class="na">plan=</span><span class="s">"patient"</span> <span class="nt">/></span>
<span class="nt"><openmp</span> <span class="nt">/></span>
<span class="nt"></features></span>
<span class="nt"><driver</span> <span class="na">name=</span><span class="s">"distributed-mpi"</span> <span class="nt">/></span>
<span class="nt"><geometry></span>
<span class="nt"><propagation_dimension></span> t <span class="nt"></propagation_dimension></span>
<span class="nt"><transverse_dimensions></span>
<span class="nt"><dimension</span> <span class="na">name=</span><span class="s">"x"</span> <span class="na">lattice=</span><span class="s">"128"</span> <span class="na">domain=</span><span class="s">"(-6, 6)"</span> <span class="nt">/></span>
<span class="nt"><dimension</span> <span class="na">name=</span><span class="s">"y"</span> <span class="na">lattice=</span><span class="s">"128"</span> <span class="na">domain=</span><span class="s">"(-6, 6)"</span> <span class="nt">/></span>
<span class="nt"></transverse_dimensions></span>
<span class="nt"></geometry></span>
<span class="nt"><vector</span> <span class="na">name=</span><span class="s">"main"</span> <span class="na">initial_basis=</span><span class="s">"x y"</span> <span class="na">type=</span><span class="s">"complex"</span><span class="nt">></span>
<span class="nt"><components></span> W <span class="nt"></components></span>
<span class="nt"><initialisation></span>
<span class="cp"><![CDATA[</span>
<span class="n">W</span> <span class="o">=</span> <span class="mf">2.0</span><span class="o">/</span><span class="n">M_PI</span> <span class="o">*</span> <span class="n">exp</span><span class="p">(</span><span class="o">-</span><span class="mf">2.0</span><span class="o">*</span><span class="p">(</span><span class="n">y</span><span class="o">*</span><span class="n">y</span> <span class="o">+</span> <span class="p">(</span><span class="n">x</span><span class="o">-</span><span class="n">alpha_0</span><span class="p">)</span><span class="o">*</span><span class="p">(</span><span class="n">x</span><span class="o">-</span><span class="n">alpha_0</span><span class="p">)));</span>
<span class="cp">]]></span>
<span class="nt"></initialisation></span>
<span class="nt"></vector></span>
<span class="nt"><vector</span> <span class="na">name=</span><span class="s">"dampConstants"</span> <span class="na">initial_basis=</span><span class="s">"x y"</span> <span class="na">type=</span><span class="s">"real"</span><span class="nt">></span>
<span class="nt"><components></span>damping<span class="nt"></components></span>
<span class="nt"><initialisation></span>
<span class="cp"><![CDATA[</span>
<span class="k">if</span> <span class="p">(</span><span class="n">sqrt</span><span class="p">(</span><span class="n">x</span><span class="o">*</span><span class="n">x</span> <span class="o">+</span> <span class="n">y</span><span class="o">*</span><span class="n">y</span><span class="p">)</span> <span class="o">></span> <span class="n">_max_x</span><span class="o">-</span><span class="n">width</span><span class="p">)</span>
<span class="n">damping</span> <span class="o">=</span> <span class="mf">0.0</span><span class="p">;</span>
<span class="k">else</span>
<span class="n">damping</span> <span class="o">=</span> <span class="mf">1.0</span><span class="p">;</span>
<span class="cp">]]></span>
<span class="nt"></initialisation></span>
<span class="nt"></vector></span>
<span class="nt"><sequence></span>
<span class="nt"><integrate</span> <span class="na">algorithm=</span><span class="s">"ARK89"</span> <span class="na">tolerance=</span><span class="s">"1e-7"</span> <span class="na">interval=</span><span class="s">"7.0e-4"</span> <span class="na">steps=</span><span class="s">"100000"</span><span class="nt">></span>
<span class="nt"><samples></span>50<span class="nt"></samples></span>
<span class="nt"><operators></span>
<span class="nt"><operator</span> <span class="na">kind=</span><span class="s">"ex"</span><span class="nt">></span>
<span class="nt"><operator_names></span>Lx Ly Lxxx Lxxy Lxyy Lyyy<span class="nt"></operator_names></span>
<span class="cp"><![CDATA[</span>
<span class="n">Lx</span> <span class="o">=</span> <span class="kc">i</span><span class="o">*</span><span class="n">kx</span><span class="p">;</span>
<span class="n">Ly</span> <span class="o">=</span> <span class="kc">i</span><span class="o">*</span><span class="n">ky</span><span class="p">;</span>
<span class="n">Lxxx</span> <span class="o">=</span> <span class="o">-</span><span class="kc">i</span><span class="o">*</span><span class="n">kx</span><span class="o">*</span><span class="n">kx</span><span class="o">*</span><span class="n">kx</span><span class="p">;</span>
<span class="n">Lxxy</span> <span class="o">=</span> <span class="o">-</span><span class="kc">i</span><span class="o">*</span><span class="n">kx</span><span class="o">*</span><span class="n">kx</span><span class="o">*</span><span class="n">ky</span><span class="p">;</span>
<span class="n">Lxyy</span> <span class="o">=</span> <span class="o">-</span><span class="kc">i</span><span class="o">*</span><span class="n">kx</span><span class="o">*</span><span class="n">ky</span><span class="o">*</span><span class="n">ky</span><span class="p">;</span>
<span class="n">Lyyy</span> <span class="o">=</span> <span class="o">-</span><span class="kc">i</span><span class="o">*</span><span class="n">ky</span><span class="o">*</span><span class="n">ky</span><span class="o">*</span><span class="n">ky</span><span class="p">;</span>
<span class="cp">]]></span>
<span class="nt"></operator></span>
<span class="nt"><integration_vectors></span>main<span class="nt"></integration_vectors></span>
<span class="nt"><dependencies></span>dampConstants<span class="nt"></dependencies></span>
<span class="cp"><![CDATA[</span>
<span class="nf">real</span> <span class="n">rotation</span> <span class="o">=</span> <span class="n">omega</span> <span class="o">+</span> <span class="n">Uint_hbar</span><span class="o">*</span><span class="p">(</span><span class="o">-</span><span class="mf">1.0</span> <span class="o">+</span> <span class="n">x</span><span class="o">*</span><span class="n">x</span> <span class="o">+</span> <span class="n">y</span><span class="o">*</span><span class="n">y</span><span class="p">);</span>
<span class="n">dW_dt</span> <span class="o">=</span> <span class="n">damping</span> <span class="o">*</span> <span class="p">(</span> <span class="n">rotation</span> <span class="o">*</span> <span class="p">(</span><span class="n">x</span><span class="o">*</span><span class="n">Ly</span><span class="p">[</span><span class="n">W</span><span class="p">]</span> <span class="o">-</span> <span class="n">y</span><span class="o">*</span><span class="n">Lx</span><span class="p">[</span><span class="n">W</span><span class="p">])</span>
<span class="o">-</span> <span class="n">Uint_hbar_on16</span><span class="o">*</span><span class="p">(</span> <span class="n">x</span><span class="o">*</span><span class="p">(</span><span class="n">Lxxy</span><span class="p">[</span><span class="n">W</span><span class="p">]</span> <span class="o">+</span> <span class="n">Lyyy</span><span class="p">[</span><span class="n">W</span><span class="p">])</span> <span class="o">-</span> <span class="n">y</span><span class="o">*</span><span class="p">(</span><span class="n">Lxyy</span><span class="p">[</span><span class="n">W</span><span class="p">]</span> <span class="o">+</span> <span class="n">Lxxx</span><span class="p">[</span><span class="n">W</span><span class="p">])</span> <span class="p">)</span>
<span class="p">);</span>
<span class="cp">]]></span>
<span class="nt"></operators></span>
<span class="nt"></integrate></span>
<span class="nt"></sequence></span>
<span class="nt"><output></span>
<span class="nt"><sampling_group</span> <span class="na">basis=</span><span class="s">"x y"</span> <span class="na">initial_sample=</span><span class="s">"yes"</span><span class="nt">></span>
<span class="nt"><moments></span>WR WI<span class="nt"></moments></span>
<span class="nt"><dependencies></span>main<span class="nt"></dependencies></span>
<span class="cp"><![CDATA[</span>
<span class="n">_SAMPLE_COMPLEX</span><span class="p">(</span><span class="n">W</span><span class="p">);</span>
<span class="cp">]]></span>
<span class="nt"></sampling_group></span>
<span class="nt"></output></span>
<span class="nt"></simulation></span>
</pre></div>
</div>
<span class="target" id="index-9"></span><p id="index-10">This example demonstrates two new features of XMDS2. The first is the use of parallel processing for a deterministic problem. The FFTW library only allows MPI processing of multidimensional vectors. For multidimensional simulations, the generated program can be parallelised simply by adding the <tt class="docutils literal"><span class="pre">name="distributed-mpi"</span></tt> argument to the <tt class="docutils literal"><span class="pre"><driver></span></tt> element.</p>
<div class="highlight-xpdeint"><div class="highlight"><pre>$ xmds2 wigner_argument_mpi.xmds
xmds2 version 2.1 "Happy Mollusc" (r2680)
Copyright 2000-2012 Graham Dennis, Joseph Hope, Mattias Johnsson
and the xmds team
Generating source code...
... done
Compiling simulation...
... done. Type './wigner' to run.
</pre></div>
</div>
<p>To use multiple processors, the final program is then called using the (implementation specific) MPI wrapper:</p>
<div class="highlight-xpdeint"><div class="highlight"><pre>$ mpirun -np 2 ./wigner
Planning for (distributed x, y) <span class="nt"><---></span> (distributed ky, kx) transform... done.
Planning for (distributed x, y) <span class="nt"><---></span> (distributed ky, kx) transform... done.
Sampled field (for moment group #1) at t = 0.000000e+00
Current timestep: 5.908361e-06
Sampled field (for moment group #1) at t = 1.400000e-05
Current timestep: 4.543131e-06
...
</pre></div>
</div>
<p>The possible acceleration achievable when parallelising a given simulation depends on a great many things including available memory and cache. As a general rule, it will improve as the simulation size gets larger, but the easiest way to find out is to test. The optimum speed up is obviously proportional to the number of available processing cores.</p>
<p id="index-11">The second new feature in this simulation is the <tt class="docutils literal"><span class="pre"><arguments></span></tt> element in the <tt class="docutils literal"><span class="pre"><features></span></tt> block. This is a way of specifying global variables with a given type that can then be input at run time. The variables are specified in a self explanatory way</p>
<div class="highlight-xpdeint"><div class="highlight"><pre><span class="nt"><arguments></span>
<span class="nt"><argument</span> <span class="na">name=</span><span class="s">"omega"</span> <span class="na">type=</span><span class="s">"real"</span> <span class="na">default_value=</span><span class="s">"0.0"</span> <span class="nt">/></span>
...
<span class="nt"><argument</span> <span class="na">name=</span><span class="s">"Uint_hbar"</span> <span class="na">type=</span><span class="s">"real"</span> <span class="na">default_value=</span><span class="s">"1.0"</span> <span class="nt">/></span>
<span class="nt"></arguments></span>
</pre></div>
</div>
<p>where the “default_value” is used as the valuable of the variable if no arguments are given. In the absence of the generating script, the program can document its options with the <tt class="docutils literal"><span class="pre">--help</span></tt> argument:</p>
<div class="highlight-none"><div class="highlight"><pre>$ ./wigner --help
Usage: wigner --omega <real> --alpha_0 <real> --absorb <real> --width <real> --Uint_hbar <real>
Details:
Option Type Default value
-o, --omega real 0.0
-a, --alpha_0 real 3.0
-b, --absorb real 8.0
-w, --width real 0.3
-U, --Uint_hbar real 1.0
</pre></div>
</div>
<p>We can change one or more of these variables’ values in the simulation by passing it at run time.</p>
<div class="highlight-none"><div class="highlight"><pre>$ mpirun -np 2 ./wigner --omega 0.1 --alpha_0 2.5 --Uint_hbar 0
Found enlightenment... (Importing wisdom)
Planning for (distributed x, y) <---> (distributed ky, kx) transform... done.
Planning for (distributed x, y) <---> (distributed ky, kx) transform... done.
Sampled field (for moment group #1) at t = 0.000000e+00
Current timestep: 1.916945e-04
...
</pre></div>
</div>
<p>The values that were used for the variables, whether default or passed in, are stored in the output file (wigner.xsil).</p>
<div class="highlight-xpdeint"><div class="highlight"><pre><span class="nt"><info></span>
Script compiled with XMDS2 version 2.1 "Happy Mollusc" (r2680)
See http://www.xmds.org for more information.
Variables that can be specified on the command line:
Command line argument omega = 1.000000e-01
Command line argument alpha_0 = 2.500000e+00
Command line argument absorb = 8.000000e+00
Command line argument width = 3.000000e-01
Command line argument Uint_hbar = 0.000000e+00
<span class="nt"></info></span>
</pre></div>
</div>
<p id="index-12">Finally, note the shorthand used in the output group</p>
<div class="highlight-xpdeint"><div class="highlight"><pre><span class="cp"><![CDATA[</span>
<span class="n">_SAMPLE_COMPLEX</span><span class="p">(</span><span class="n">W</span><span class="p">);</span>
<span class="cp">]]></span>
</pre></div>
</div>
<p>which is short for</p>
<div class="highlight-xpdeint"><div class="highlight"><pre><span class="cp"><![CDATA[</span>
<span class="n">WR</span> <span class="o">=</span> <span class="n">W</span><span class="p">.</span><span class="n">Re</span><span class="p">();</span>
<span class="n">WI</span> <span class="o">=</span> <span class="n">W</span><span class="p">.</span><span class="n">Im</span><span class="p">();</span>
<span class="cp">]]></span>
</pre></div>
</div>
</div>
<div class="section" id="finding-the-ground-state-of-a-bec-continuous-renormalisation">
<span id="groundstatebec"></span><h2>Finding the Ground State of a BEC (continuous renormalisation)<a class="headerlink" href="#finding-the-ground-state-of-a-bec-continuous-renormalisation" title="Permalink to this headline">¶</a></h2>
<p>This simulation solves another partial differential equation, but introduces several powerful new features in XMDS2. The nominal problem is the calculation of the lowest energy eigenstate of a non-linear Schrödinger equation:</p>
<div class="math">
\[\frac{\partial \phi}{\partial t} = i \left[\frac{1}{2}\frac{\partial^2}{\partial y^2} - V(y) - U_{int}|\phi|^2\right]\phi\]</div>
<p>which can be found by evolving the above equation in imaginary time while keeping the normalisation constant. This causes eigenstates to exponentially decay at the rate of their eigenvalue, so after a short time only the state with the lowest eigenvalue remains. The evolution equation is straightforward:</p>
<div class="math">
\[\frac{\partial \phi}{\partial t} = \left[\frac{1}{2}\frac{\partial^2}{\partial y^2} - V(y) - U_{int}|\phi|^2\right]\phi\]</div>
<p>but we will need to use new XMDS2 features to manage the normalisation of the function <span class="math">\(\phi(y,t)\)</span>. The normalisation for a non-linear Schrödinger equation is given by <span class="math">\(\int dy |\phi(y,t)|^2 = N_{particles}\)</span>, where <span class="math">\(N_{particles}\)</span> is the number of particles described by the wavefunction.</p>
<p>The code for this simulation can be found in <tt class="docutils literal"><span class="pre">examples/groundstate_workedexamples.xmds</span></tt>:</p>
<div class="highlight-xpdeint"><div class="highlight"><pre><span class="nt"><simulation</span> <span class="na">xmds-version=</span><span class="s">"2"</span><span class="nt">></span>
<span class="nt"><name></span>groundstate<span class="nt"></name></span>
<span class="nt"><author></span>Joe Hope<span class="nt"></author></span>
<span class="nt"><description></span>
Calculate the ground state of the non-linear Schrodinger equation in a harmonic magnetic trap.
This is done by evolving it in imaginary time while re-normalising each timestep.
<span class="nt"></description></span>
<span class="nt"><features></span>
<span class="nt"><auto_vectorise</span> <span class="nt">/></span>
<span class="nt"><benchmark</span> <span class="nt">/></span>
<span class="nt"><bing</span> <span class="nt">/></span>
<span class="nt"><fftw</span> <span class="na">plan=</span><span class="s">"exhaustive"</span> <span class="nt">/></span>
<span class="nt"><globals></span>
<span class="cp"><![CDATA[</span>
<span class="k">const</span> <span class="nf">real</span> <span class="n">Uint</span> <span class="o">=</span> <span class="mf">2.0</span><span class="p">;</span>
<span class="k">const</span> <span class="nf">real</span> <span class="n">Nparticles</span> <span class="o">=</span> <span class="mf">5.0</span><span class="p">;</span>
<span class="cp">]]></span>
<span class="nt"></globals></span>
<span class="nt"></features></span>
<span class="nt"><geometry></span>
<span class="nt"><propagation_dimension></span> t <span class="nt"></propagation_dimension></span>
<span class="nt"><transverse_dimensions></span>
<span class="nt"><dimension</span> <span class="na">name=</span><span class="s">"y"</span> <span class="na">lattice=</span><span class="s">"256"</span> <span class="na">domain=</span><span class="s">"(-15.0, 15.0)"</span> <span class="nt">/></span>
<span class="nt"></transverse_dimensions></span>
<span class="nt"></geometry></span>
<span class="nt"><vector</span> <span class="na">name=</span><span class="s">"potential"</span> <span class="na">initial_basis=</span><span class="s">"y"</span> <span class="na">type=</span><span class="s">"real"</span><span class="nt">></span>
<span class="nt"><components></span> V1 <span class="nt"></components></span>
<span class="nt"><initialisation></span>
<span class="cp"><![CDATA[</span>
<span class="n">V1</span> <span class="o">=</span> <span class="mf">0.5</span><span class="o">*</span><span class="n">y</span><span class="o">*</span><span class="n">y</span><span class="p">;</span>
<span class="cp">]]></span>
<span class="nt"></initialisation></span>
<span class="nt"></vector></span>
<span class="nt"><vector</span> <span class="na">name=</span><span class="s">"wavefunction"</span> <span class="na">initial_basis=</span><span class="s">"y"</span> <span class="na">type=</span><span class="s">"complex"</span><span class="nt">></span>
<span class="nt"><components></span> phi <span class="nt"></components></span>
<span class="nt"><initialisation></span>
<span class="cp"><![CDATA[</span>
<span class="k">if</span> <span class="p">(</span><span class="n">fabs</span><span class="p">(</span><span class="n">y</span><span class="p">)</span> <span class="o"><</span> <span class="mf">3.0</span><span class="p">)</span> <span class="p">{</span>
<span class="n">phi</span> <span class="o">=</span> <span class="mf">1.0</span><span class="p">;</span>
<span class="c1">// This will be automatically normalised later</span>
<span class="p">}</span> <span class="k">else</span> <span class="p">{</span>
<span class="n">phi</span> <span class="o">=</span> <span class="mf">0.0</span><span class="p">;</span>
<span class="p">}</span>
<span class="cp">]]></span>
<span class="nt"></initialisation></span>
<span class="nt"></vector></span>
<span class="nt"><computed_vector</span> <span class="na">name=</span><span class="s">"normalisation"</span> <span class="na">dimensions=</span><span class="s">""</span> <span class="na">type=</span><span class="s">"real"</span><span class="nt">></span>
<span class="nt"><components></span> Ncalc <span class="nt"></components></span>
<span class="nt"><evaluation></span>
<span class="nt"><dependencies</span> <span class="na">basis=</span><span class="s">"y"</span><span class="nt">></span>wavefunction<span class="nt"></dependencies></span>
<span class="cp"><![CDATA[</span>
<span class="c1">// Calculate the current normalisation of the wave function.</span>
<span class="n">Ncalc</span> <span class="o">=</span> <span class="nf">mod2</span><span class="p">(</span><span class="n">phi</span><span class="p">);</span>
<span class="cp">]]></span>
<span class="nt"></evaluation></span>
<span class="nt"></computed_vector></span>
<span class="nt"><sequence></span>
<span class="nt"><filter></span>
<span class="cp"><![CDATA[</span>
<span class="n">printf</span><span class="p">(</span><span class="s">"Hello world from a filter segment!</span><span class="se">\n</span><span class="s">"</span><span class="p">);</span>
<span class="cp">]]></span>
<span class="nt"></filter></span>
<span class="nt"><filter></span>
<span class="nt"><dependencies></span>normalisation wavefunction<span class="nt"></dependencies></span>
<span class="cp"><![CDATA[</span>
<span class="n">phi</span> <span class="o">*=</span> <span class="n">sqrt</span><span class="p">(</span><span class="n">Nparticles</span><span class="o">/</span><span class="n">Ncalc</span><span class="p">);</span>
<span class="cp">]]></span>
<span class="nt"></filter></span>
<span class="nt"><integrate</span> <span class="na">algorithm=</span><span class="s">"ARK45"</span> <span class="na">interval=</span><span class="s">"1.0"</span> <span class="na">steps=</span><span class="s">"4000"</span> <span class="na">tolerance=</span><span class="s">"1e-10"</span><span class="nt">></span>
<span class="nt"><samples></span>25 4000<span class="nt"></samples></span>
<span class="nt"><filters</span> <span class="na">where=</span><span class="s">"step end"</span><span class="nt">></span>
<span class="nt"><filter></span>
<span class="nt"><dependencies></span>wavefunction normalisation<span class="nt"></dependencies></span>
<span class="cp"><![CDATA[</span>
<span class="c1">// Correct normalisation of the wavefunction</span>
<span class="n">phi</span> <span class="o">*=</span> <span class="n">sqrt</span><span class="p">(</span><span class="n">Nparticles</span><span class="o">/</span><span class="n">Ncalc</span><span class="p">);</span>
<span class="cp">]]></span>
<span class="nt"></filter></span>
<span class="nt"></filters></span>
<span class="nt"><operators></span>
<span class="nt"><operator</span> <span class="na">kind=</span><span class="s">"ip"</span><span class="nt">></span>
<span class="nt"><operator_names></span>T<span class="nt"></operator_names></span>
<span class="cp"><![CDATA[</span>
<span class="n">T</span> <span class="o">=</span> <span class="o">-</span><span class="mf">0.5</span><span class="o">*</span><span class="n">ky</span><span class="o">*</span><span class="n">ky</span><span class="p">;</span>
<span class="cp">]]></span>
<span class="nt"></operator></span>
<span class="nt"><integration_vectors></span>wavefunction<span class="nt"></integration_vectors></span>
<span class="nt"><dependencies></span>potential<span class="nt"></dependencies></span>
<span class="cp"><![CDATA[</span>
<span class="n">dphi_dt</span> <span class="o">=</span> <span class="n">T</span><span class="p">[</span><span class="n">phi</span><span class="p">]</span> <span class="o">-</span> <span class="p">(</span><span class="n">V1</span> <span class="o">+</span> <span class="n">Uint</span><span class="o">*</span><span class="nf">mod2</span><span class="p">(</span><span class="n">phi</span><span class="p">))</span><span class="o">*</span><span class="n">phi</span><span class="p">;</span>
<span class="cp">]]></span>
<span class="nt"></operators></span>
<span class="nt"></integrate></span>
<span class="nt"><breakpoint</span> <span class="na">filename=</span><span class="s">"groundstate_break.xsil"</span><span class="nt">></span>
<span class="nt"><dependencies</span> <span class="na">basis=</span><span class="s">"ky"</span><span class="nt">></span>wavefunction <span class="nt"></dependencies></span>
<span class="nt"></breakpoint></span>
<span class="nt"></sequence></span>
<span class="nt"><output></span>
<span class="nt"><sampling_group</span> <span class="na">basis=</span><span class="s">"y"</span> <span class="na">initial_sample=</span><span class="s">"yes"</span><span class="nt">></span>
<span class="nt"><moments></span>norm_dens<span class="nt"></moments></span>
<span class="nt"><dependencies></span>wavefunction normalisation<span class="nt"></dependencies></span>
<span class="cp"><![CDATA[</span>
<span class="n">norm_dens</span> <span class="o">=</span> <span class="nf">mod2</span><span class="p">(</span><span class="n">phi</span><span class="p">);</span>
<span class="cp">]]></span>
<span class="nt"></sampling_group></span>
<span class="nt"><sampling_group</span> <span class="na">initial_sample=</span><span class="s">"yes"</span><span class="nt">></span>
<span class="nt"><moments></span>norm<span class="nt"></moments></span>
<span class="nt"><dependencies></span>normalisation<span class="nt"></dependencies></span>
<span class="cp"><![CDATA[</span>
<span class="n">norm</span> <span class="o">=</span> <span class="n">Ncalc</span><span class="p">;</span>
<span class="cp">]]></span>
<span class="nt"></sampling_group></span>
<span class="nt"></output></span>
<span class="nt"></simulation></span>
</pre></div>
</div>
<p>We have used the <tt class="docutils literal"><span class="pre">plan="exhaustive"</span></tt> option in the <tt class="docutils literal"><span class="pre"><fftw></span></tt> element to ensure that the absolute fastest transform method is found. Because the FFTW package stores the results of its tests (by default in the ~/.xmds/wisdom directory), this option does not cause significant computational overhead, except perhaps on the very first run of a new program.</p>
<p id="index-13">This simulation introduces the first example of a very powerful feature in XMDS2: the <tt class="docutils literal"><span class="pre"><computed_vector></span></tt> element. This has syntax like any other vector, including possible dependencies on other vectors, and an ability to be used in any element that can use vectors. The difference is that, much like noise vectors, computed vectors are recalculated each time they are required. This means that a computed vector can never be used as an integration vector, as its values are not stored. However, computed vectors allow a simple and efficient method of describing complicated functions of other vectors. Computed vectors may depend on other computed vectors, allowing for spectral filtering and other advanced options. See for example, the <a class="reference internal" href="advanced_topics.html#advancedtopics"><em>Advanced Topics</em></a> section on <a class="reference internal" href="advanced_topics.html#convolutions"><em>Convolutions and Fourier transforms</em></a>.</p>
<p>The difference between a computed vector and a stored vector is emphasised by the replacement of the <tt class="docutils literal"><span class="pre"><initialisation></span></tt> element with an <tt class="docutils literal"><span class="pre"><evaluation></span></tt> element. Apart from the name, they have virtually identical purpose and syntax.</p>
<div class="highlight-xpdeint"><div class="highlight"><pre><span class="nt"><computed_vector</span> <span class="na">name=</span><span class="s">"normalisation"</span> <span class="na">dimensions=</span><span class="s">""</span> <span class="na">type=</span><span class="s">"real"</span><span class="nt">></span>
<span class="nt"><components></span> Ncalc <span class="nt"></components></span>
<span class="nt"><evaluation></span>
<span class="nt"><dependencies</span> <span class="na">basis=</span><span class="s">"y"</span><span class="nt">></span>wavefunction<span class="nt"></dependencies></span>
<span class="cp"><![CDATA[</span>
<span class="c1">// Calculate the current normalisation of the wave function.</span>
<span class="n">Ncalc</span> <span class="o">=</span> <span class="nf">mod2</span><span class="p">(</span><span class="n">phi</span><span class="p">);</span>
<span class="cp">]]></span>
<span class="nt"></evaluation></span>
<span class="nt"></computed_vector></span>
</pre></div>
</div>
<p>Here, our computed vector has no transverse dimensions and depends on the components of “wavefunction”, so the extra transverse dimensions are integrated out. This code therefore integrates the square modulus of the field, and returns it in the variable “Ncalc”. This will be used below to renormalise the “phi” field. Before we examine that process, we have to introduce the <tt class="docutils literal"><span class="pre"><filter></span></tt> element.</p>
<p>The <tt class="docutils literal"><span class="pre"><filter></span></tt> element can be placed in the <tt class="docutils literal"><span class="pre"><sequence></span></tt> element, or inside <tt class="docutils literal"><span class="pre"><integrate></span></tt> elements as we will see next. Elements placed in the <tt class="docutils literal"><span class="pre"><sequence></span></tt> element are executed in the order they are found in the .xmds file. Filter elements place the included CDATA block directly into the generated program at the designated position. If the element does not contain any dependencies, like in our first example, then the code is placed alone:</p>
<div class="highlight-xpdeint"><div class="highlight"><pre><span class="nt"><filter></span>
<span class="cp"><![CDATA[</span>
<span class="n">printf</span><span class="p">(</span><span class="s">"Hello world from a filter segment!</span><span class="se">\n</span><span class="s">"</span><span class="p">);</span>
<span class="cp">]]></span>
<span class="nt"></filter></span>
</pre></div>
</div>
<p>This filter block merely prints a string into the output when the generated program is run. If the <tt class="docutils literal"><span class="pre"><filter></span></tt> element contains dependencies, then the variables defined in those vectors (or computed vectors, or noise vectors) will be available, and the CDATA block will be placed inside loops that run over all the transverse dimensions used by the included vectors. The second filter block in this example depends on both the “wavefunction” and “normalisation” vectors:</p>
<div class="highlight-xpdeint"><div class="highlight"><pre><span class="nt"><filter></span>
<span class="nt"><dependencies></span>normalisation wavefunction<span class="nt"></dependencies></span>
<span class="cp"><![CDATA[</span>
<span class="n">phi</span> <span class="o">*=</span> <span class="n">sqrt</span><span class="p">(</span><span class="n">Nparticles</span><span class="o">/</span><span class="n">Ncalc</span><span class="p">);</span>
<span class="cp">]]></span>
<span class="nt"></filter></span>
</pre></div>
</div>
<p>Since this filter depends on a vector with the transverse dimension “y”, this filter will execute for each point in “y”. This code multiplies the value of the field “phi” by the factor required to produce a normalised function in the sense that <span class="math">\(\int dy |\phi(y,t)|^2 = N_{particles}\)</span>.</p>
<p>The next usage of a <tt class="docutils literal"><span class="pre"><filter></span></tt> element in this program is inside the <tt class="docutils literal"><span class="pre"><integrate></span></tt> element, where all filters are placed inside a <tt class="docutils literal"><span class="pre"><filters></span></tt> element.</p>
<div class="highlight-xpdeint"><div class="highlight"><pre><span class="nt"><filters</span> <span class="na">where=</span><span class="s">"step end"</span><span class="nt">></span>
<span class="nt"><filter></span>
<span class="nt"><dependencies></span>wavefunction normalisation<span class="nt"></dependencies></span>
<span class="cp"><![CDATA[</span>
<span class="c1">// Correct normalisation of the wavefunction</span>
<span class="n">phi</span> <span class="o">*=</span> <span class="n">sqrt</span><span class="p">(</span><span class="n">Nparticles</span><span class="o">/</span><span class="n">Ncalc</span><span class="p">);</span>
<span class="cp">]]></span>
<span class="nt"></filter></span>
<span class="nt"></filters></span>
</pre></div>
</div>
<p>Filters placed in an integration block are applied each integration step. The “where” flag is used to determine whether the filter should be applied directly before or directly after each integration step. The default value for the where flag is <tt class="docutils literal"><span class="pre">where="step</span> <span class="pre">start"</span></tt>, but in this case we chose “step end” to make sure that the final output was normalised after the last integration step.</p>
<p>At the end of the sequence element we introduce the <tt class="docutils literal"><span class="pre"><breakpoint></span></tt> element. This serves two purposes. The first is a simple matter of convenience. Often when we manage our input and output from a simulation, we are interested solely in storing the exact state of our integration vectors. A breakpoint element does exactly that, storing the components of any vectors contained within, taking all the normal options of the <tt class="docutils literal"><span class="pre"><output></span></tt> element but not requiring any <tt class="docutils literal"><span class="pre"><sampling_group></span></tt> elements as that information is assumed.</p>
<div class="highlight-xpdeint"><div class="highlight"><pre><span class="nt"><breakpoint</span> <span class="na">filename=</span><span class="s">"groundstate_break.xsil"</span><span class="nt">></span>
<span class="nt"><dependencies</span> <span class="na">basis=</span><span class="s">"ky"</span><span class="nt">></span>wavefunction<span class="nt"></dependencies></span>
<span class="nt"></breakpoint></span>
</pre></div>
</div>
<p>If the filename argument is omitted, the output filenames are numbered sequentially. Any given <tt class="docutils literal"><span class="pre"><breakpoint></span></tt> element must only depend on vectors with identical dimensions.</p>
<p>This program begins with a very crude guess to the ground state, but it rapidly converges to the lowest eigenstate.</p>
<div class="figure align-center">
<img alt="_images/groundstateU2.png" src="_images/groundstateU2.png" />
<p class="caption">The shape of the ground state rapidly approaches the lowest eigenstate. For weak nonlinearities, it is nearly Gaussian.</p>
</div>
<div class="figure align-center">
<img alt="_images/groundstateU20.png" src="_images/groundstateU20.png" />
<p class="caption">When the nonlinear term is larger (<span class="math">\(U=20\)</span>), the ground state is wider and more parabolic.</p>
</div>
</div>
<div class="section" id="finding-the-ground-state-of-a-bec-again">
<span id="hermitegaussgroundstatebec"></span><h2>Finding the Ground State of a BEC again<a class="headerlink" href="#finding-the-ground-state-of-a-bec-again" title="Permalink to this headline">¶</a></h2>
<p>Here we repeat the same simulation as in the <a class="reference internal" href="#groundstatebec"><em>Finding the Ground State of a BEC (continuous renormalisation)</em></a> example, using a different transform basis. While spectral methods are very effective, and Fourier transforms are typically very efficient due to the Fast Fourier transform algorithm, it is often desirable to describe nonlocal evolution in bases other than the Fourier basis. The previous calculation was the Schrödinger equation with a harmonic potential and a nonlinear term. The eigenstates of such a system are known analytically to be Gaussians multiplied by the Hermite polynomials.</p>
<div class="math">
\[\left[-\frac{\hbar}{2 m}\frac{\partial^2}{\partial x^2} + \frac{1}{2}\omega^2 x^2\right]\phi_n(x) = E_n \phi_n(x)\]</div>
<p>where</p>
<div class="math">
\[\phi_n(x,t) = \sqrt{\frac{1}{2^n n!}} \left(\frac{m \omega}{\hbar \pi}\right)^\frac{1}{4} e^{-\frac{m \omega x^2}{2\hbar}} H_n\left(\sqrt{\frac{m \omega}{\hbar}x}\right),\;\;\;\;\;\;E_n = \left(n+\frac{1}{2}\right) \omega\]</div>
<p>where <span class="math">\(H_n(u)\)</span> are the physicist’s version of the Hermite polynomials. Rather than describing the derivatives as diagonal terms in Fourier space, we therefore have the option of describing the entire <span class="math">\(-\frac{\hbar}{2 m}\frac{\partial^2}{\partial x^2} + \frac{1}{2}\omega^2 x^2\)</span> term as a diagonal term in the Hermite-Gaussian basis. Here is an XMDS2 simulation that performs the integration in this basis. The following is a simplified version of the <tt class="docutils literal"><span class="pre">examples/hermitegauss_groundstate.xmds</span></tt> script.</p>
<div class="highlight-xpdeint"><div class="highlight"><pre><span class="nt"><simulation</span> <span class="na">xmds-version=</span><span class="s">"2"</span><span class="nt">></span>
<span class="nt"><name></span>hermitegauss_groundstate<span class="nt"></name></span>
<span class="nt"><author></span>Graham Dennis<span class="nt"></author></span>
<span class="nt"><description></span>
Solve for the groundstate of the Gross-Pitaevskii equation using the Hermite-Gauss basis.
<span class="nt"></description></span>
<span class="nt"><features></span>
<span class="nt"><benchmark</span> <span class="nt">/></span>
<span class="nt"><bing</span> <span class="nt">/></span>
<span class="nt"><validation</span> <span class="na">kind=</span><span class="s">"run-time"</span> <span class="nt">/></span>
<span class="nt"><globals></span>
<span class="cp"><![CDATA[</span>
<span class="k">const</span> <span class="nf">real</span> <span class="n">omegaz</span> <span class="o">=</span> <span class="mi">2</span><span class="o">*</span><span class="n">M_PI</span><span class="o">*</span><span class="mi">20</span><span class="p">;</span>
<span class="k">const</span> <span class="nf">real</span> <span class="n">omegarho</span> <span class="o">=</span> <span class="mi">2</span><span class="o">*</span><span class="n">M_PI</span><span class="o">*</span><span class="mi">200</span><span class="p">;</span>
<span class="k">const</span> <span class="nf">real</span> <span class="n">hbar</span> <span class="o">=</span> <span class="mf">1.05457148e-34</span><span class="p">;</span>
<span class="k">const</span> <span class="nf">real</span> <span class="n">M</span> <span class="o">=</span> <span class="mf">1.409539200000000e-25</span><span class="p">;</span>
<span class="k">const</span> <span class="nf">real</span> <span class="n">g</span> <span class="o">=</span> <span class="mf">9.8</span><span class="p">;</span>
<span class="k">const</span> <span class="nf">real</span> <span class="n">scatteringLength</span> <span class="o">=</span> <span class="mf">5.57e-9</span><span class="p">;</span>
<span class="k">const</span> <span class="nf">real</span> <span class="n">transverseLength</span> <span class="o">=</span> <span class="mf">1e-5</span><span class="p">;</span>
<span class="k">const</span> <span class="nf">real</span> <span class="n">Uint</span> <span class="o">=</span> <span class="mf">4.0</span><span class="o">*</span><span class="n">M_PI</span><span class="o">*</span><span class="n">hbar</span><span class="o">*</span><span class="n">hbar</span><span class="o">*</span><span class="n">scatteringLength</span><span class="o">/</span><span class="n">M</span><span class="o">/</span><span class="n">transverseLength</span><span class="o">/</span><span class="n">transverseLength</span><span class="p">;</span>
<span class="k">const</span> <span class="nf">real</span> <span class="n">Nparticles</span> <span class="o">=</span> <span class="mf">5.0e5</span><span class="p">;</span>
<span class="cm">/* offset constants */</span>
<span class="k">const</span> <span class="nf">real</span> <span class="n">EnergyOffset</span> <span class="o">=</span> <span class="mf">0.3</span><span class="o">*</span><span class="n">pow</span><span class="p">(</span><span class="n">pow</span><span class="p">(</span><span class="mf">3.0</span><span class="o">*</span><span class="n">Nparticles</span><span class="o">/</span><span class="mi">4</span><span class="o">*</span><span class="n">omegarho</span><span class="o">*</span><span class="n">Uint</span><span class="p">,</span><span class="mf">2.0</span><span class="p">)</span><span class="o">*</span><span class="n">M</span><span class="o">/</span><span class="mf">2.0</span><span class="p">,</span><span class="mi">1</span><span class="o">/</span><span class="mf">3.0</span><span class="p">);</span> <span class="c1">// 1D</span>
<span class="cp">]]></span>
<span class="nt"></globals></span>
<span class="nt"></features></span>
<span class="nt"><geometry></span>
<span class="nt"><propagation_dimension></span> t <span class="nt"></propagation_dimension></span>
<span class="nt"><transverse_dimensions></span>
<span class="nt"><dimension</span> <span class="na">name=</span><span class="s">"x"</span> <span class="na">lattice=</span><span class="s">"100"</span> <span class="na">length_scale=</span><span class="s">"sqrt(hbar/(M*omegarho))"</span> <span class="na">transform=</span><span class="s">"hermite-gauss"</span> <span class="nt">/></span>
<span class="nt"></transverse_dimensions></span>
<span class="nt"></geometry></span>
<span class="nt"><vector</span> <span class="na">name=</span><span class="s">"wavefunction"</span> <span class="na">initial_basis=</span><span class="s">"x"</span> <span class="na">type=</span><span class="s">"complex"</span><span class="nt">></span>
<span class="nt"><components></span> phi <span class="nt"></components></span>
<span class="nt"><initialisation></span>
<span class="cp"><![CDATA[</span>
<span class="n">phi</span> <span class="o">=</span> <span class="n">sqrt</span><span class="p">(</span><span class="n">Nparticles</span><span class="p">)</span> <span class="o">*</span> <span class="n">pow</span><span class="p">(</span><span class="n">M</span><span class="o">*</span><span class="n">omegarho</span><span class="o">/</span><span class="p">(</span><span class="n">hbar</span><span class="o">*</span><span class="n">M_PI</span><span class="p">),</span> <span class="mf">0.25</span><span class="p">)</span> <span class="o">*</span> <span class="n">exp</span><span class="p">(</span><span class="o">-</span><span class="mf">0.5</span><span class="o">*</span><span class="p">(</span><span class="n">M</span><span class="o">*</span><span class="n">omegarho</span><span class="o">/</span><span class="n">hbar</span><span class="p">)</span><span class="o">*</span><span class="n">x</span><span class="o">*</span><span class="n">x</span><span class="p">);</span>
<span class="cp">]]></span>
<span class="nt"></initialisation></span>
<span class="nt"></vector></span>
<span class="nt"><computed_vector</span> <span class="na">name=</span><span class="s">"normalisation"</span> <span class="na">dimensions=</span><span class="s">""</span> <span class="na">type=</span><span class="s">"real"</span><span class="nt">></span>
<span class="nt"><components></span> Ncalc <span class="nt"></components></span>
<span class="nt"><evaluation></span>
<span class="nt"><dependencies</span> <span class="na">basis=</span><span class="s">"x"</span><span class="nt">></span>wavefunction<span class="nt"></dependencies></span>
<span class="cp"><![CDATA[</span>
<span class="c1">// Calculate the current normalisation of the wave function.</span>
<span class="n">Ncalc</span> <span class="o">=</span> <span class="nf">mod2</span><span class="p">(</span><span class="n">phi</span><span class="p">);</span>
<span class="cp">]]></span>
<span class="nt"></evaluation></span>
<span class="nt"></computed_vector></span>
<span class="nt"><sequence></span>
<span class="nt"><integrate</span> <span class="na">algorithm=</span><span class="s">"ARK45"</span> <span class="na">interval=</span><span class="s">"1.0e-2"</span> <span class="na">steps=</span><span class="s">"4000"</span> <span class="na">tolerance=</span><span class="s">"1e-10"</span><span class="nt">></span>
<span class="nt"><samples></span>100 100<span class="nt"></samples></span>
<span class="nt"><filters></span>
<span class="nt"><filter></span>
<span class="nt"><dependencies></span>wavefunction normalisation<span class="nt"></dependencies></span>
<span class="cp"><![CDATA[</span>
<span class="c1">// Correct normalisation of the wavefunction</span>
<span class="n">phi</span> <span class="o">*=</span> <span class="n">sqrt</span><span class="p">(</span><span class="n">Nparticles</span><span class="o">/</span><span class="n">Ncalc</span><span class="p">);</span>
<span class="cp">]]></span>
<span class="nt"></filter></span>
<span class="nt"></filters></span>
<span class="nt"><operators></span>
<span class="nt"><operator</span> <span class="na">kind=</span><span class="s">"ip"</span> <span class="na">type=</span><span class="s">"real"</span><span class="nt">></span>
<span class="nt"><operator_names></span>L<span class="nt"></operator_names></span>
<span class="cp"><![CDATA[</span>
<span class="n">L</span> <span class="o">=</span> <span class="n">EnergyOffset</span><span class="o">/</span><span class="n">hbar</span> <span class="o">-</span> <span class="p">(</span><span class="n">nx</span> <span class="o">+</span> <span class="mf">0.5</span><span class="p">)</span><span class="o">*</span><span class="n">omegarho</span><span class="p">;</span>
<span class="cp">]]></span>
<span class="nt"></operator></span>
<span class="nt"><integration_vectors></span>wavefunction<span class="nt"></integration_vectors></span>
<span class="cp"><![CDATA[</span>
<span class="n">dphi_dt</span> <span class="o">=</span> <span class="n">L</span><span class="p">[</span><span class="n">phi</span><span class="p">]</span> <span class="o">-</span> <span class="n">Uint</span><span class="o">/</span><span class="n">hbar</span><span class="o">*</span><span class="nf">mod2</span><span class="p">(</span><span class="n">phi</span><span class="p">)</span><span class="o">*</span><span class="n">phi</span><span class="p">;</span>
<span class="cp">]]></span>
<span class="nt"></operators></span>
<span class="nt"></integrate></span>
<span class="nt"><filter></span>
<span class="nt"><dependencies></span>normalisation wavefunction<span class="nt"></dependencies></span>
<span class="cp"><![CDATA[</span>
<span class="n">phi</span> <span class="o">*=</span> <span class="n">sqrt</span><span class="p">(</span><span class="n">Nparticles</span><span class="o">/</span><span class="n">Ncalc</span><span class="p">);</span>
<span class="cp">]]></span>
<span class="nt"></filter></span>
<span class="nt"><breakpoint</span> <span class="na">filename=</span><span class="s">"hermitegauss_groundstate_break.xsil"</span> <span class="na">format=</span><span class="s">"ascii"</span><span class="nt">></span>
<span class="nt"><dependencies</span> <span class="na">basis=</span><span class="s">"nx"</span><span class="nt">></span>wavefunction<span class="nt"></dependencies></span>
<span class="nt"></breakpoint></span>
<span class="nt"></sequence></span>
<span class="nt"><output></span>
<span class="nt"><sampling_group</span> <span class="na">basis=</span><span class="s">"x"</span> <span class="na">initial_sample=</span><span class="s">"yes"</span><span class="nt">></span>
<span class="nt"><moments></span>dens<span class="nt"></moments></span>
<span class="nt"><dependencies></span>wavefunction<span class="nt"></dependencies></span>
<span class="cp"><![CDATA[</span>
<span class="n">dens</span> <span class="o">=</span> <span class="nf">mod2</span><span class="p">(</span><span class="n">phi</span><span class="p">);</span>
<span class="cp">]]></span>
<span class="nt"></sampling_group></span>
<span class="nt"><sampling_group</span> <span class="na">basis=</span><span class="s">"kx"</span> <span class="na">initial_sample=</span><span class="s">"yes"</span><span class="nt">></span>
<span class="nt"><moments></span>dens<span class="nt"></moments></span>
<span class="nt"><dependencies></span>wavefunction<span class="nt"></dependencies></span>
<span class="cp"><![CDATA[</span>
<span class="n">dens</span> <span class="o">=</span> <span class="nf">mod2</span><span class="p">(</span><span class="n">phi</span><span class="p">);</span>
<span class="cp">]]></span>
<span class="nt"></sampling_group></span>
<span class="nt"></output></span>
<span class="nt"></simulation></span>
</pre></div>
</div>
<p>The major difference in this simulation code, aside from the switch back from dimensionless units, is the new transverse dimension type in the <tt class="docutils literal"><span class="pre"><geometry></span></tt> element.</p>
<div class="highlight-xpdeint"><div class="highlight"><pre><span class="nt"><dimension</span> <span class="na">name=</span><span class="s">"x"</span> <span class="na">lattice=</span><span class="s">"100"</span> <span class="na">length_scale=</span><span class="s">"sqrt(hbar/(M*omegarho))"</span> <span class="na">transform=</span><span class="s">"hermite-gauss"</span> <span class="nt">/></span>
</pre></div>
</div>
<p>We have explicitly defined the “transform” option, which by default expects the Fourier transform. The <tt class="docutils literal"><span class="pre">transform="hermite-gauss"</span></tt> option requires the ‘mpmath’ package installed, just as Fourier transforms require the FFTW package to be installed. The “lattice” option details the number of hermite-Gaussian eigenstates to include, and automatically starts from the zeroth order polynomial and increases. The number of hermite-Gaussian modes fully determines the irregular spatial grid up to an overall scale given by the <tt class="docutils literal"><span class="pre">length_scale</span></tt> parameter.</p>
<p>The <tt class="docutils literal"><span class="pre">length_scale="sqrt(hbar/(M*omegarho))"</span></tt> option requires a real number, but since this script defines it in terms of variables, XMDS2 is unable to verify that the resulting function is real-valued at the time of generating the code. XMDS2 will therefore fail to compile this program without the feature:</p>
<div class="highlight-xpdeint"><div class="highlight"><pre><span class="nt"><validation</span> <span class="na">kind=</span><span class="s">"run-time"</span> <span class="nt">/></span>
</pre></div>
</div>
<p>which disables many of these checks at the time of writing the C-code.</p>
</div>
<div class="section" id="multi-component-schrodinger-equation">
<span id="dmultistatese"></span><h2>Multi-component Schrödinger equation<a class="headerlink" href="#multi-component-schrodinger-equation" title="Permalink to this headline">¶</a></h2>
<p>This example demonstrates a simple method for doing matrix calculations in XMDS2. We are solving the multi-component PDE</p>
<div class="math">
\[\frac{\partial \phi_j(x,y)}{\partial t} = \frac{i}{2}\left(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}\right)\phi_j(x,y) - i U(x,y) \sum_k V_{j k}\phi_k(x,y)\]</div>
<p>where the last term is more commonly written as a matrix multiplication. Writing this term out explicitly is feasible for a small number of components, but when the number of components becomes large, or perhaps <span class="math">\(V_{j k}\)</span> should be precomputed for efficiency reasons, it is useful to be able to perform this sum over the integer dimensions automatically. This example show how this can be done naturally using a computed vector. The XMDS2 script is as follows:</p>
<div class="highlight-xpdeint"><div class="highlight"><pre><span class="nt"><simulation</span> <span class="na">xmds-version=</span><span class="s">"2"</span><span class="nt">></span>
<span class="nt"><name></span>2DMSse<span class="nt"></name></span>
<span class="nt"><author></span>Joe Hope<span class="nt"></author></span>
<span class="nt"><description></span>
Schroedinger equation for multiple internal states in two spatial dimensions.
<span class="nt"></description></span>
<span class="nt"><features></span>
<span class="nt"><benchmark</span> <span class="nt">/></span>
<span class="nt"><bing</span> <span class="nt">/></span>
<span class="nt"><fftw</span> <span class="na">plan=</span><span class="s">"patient"</span> <span class="nt">/></span>
<span class="nt"><openmp</span> <span class="nt">/></span>
<span class="nt"><auto_vectorise</span> <span class="nt">/></span>
<span class="nt"></features></span>
<span class="nt"><geometry></span>
<span class="nt"><propagation_dimension></span> t <span class="nt"></propagation_dimension></span>
<span class="nt"><transverse_dimensions></span>
<span class="nt"><dimension</span> <span class="na">name=</span><span class="s">"x"</span> <span class="na">lattice=</span><span class="s">"32"</span> <span class="na">domain=</span><span class="s">"(-6, 6)"</span> <span class="nt">/></span>
<span class="nt"><dimension</span> <span class="na">name=</span><span class="s">"y"</span> <span class="na">lattice=</span><span class="s">"32"</span> <span class="na">domain=</span><span class="s">"(-6, 6)"</span> <span class="nt">/></span>
<span class="nt"><dimension</span> <span class="na">name=</span><span class="s">"j"</span> <span class="na">type=</span><span class="s">"integer"</span> <span class="na">lattice=</span><span class="s">"2"</span> <span class="na">domain=</span><span class="s">"(0,1)"</span> <span class="na">aliases=</span><span class="s">"k"</span><span class="nt">/></span>
<span class="nt"></transverse_dimensions></span>
<span class="nt"></geometry></span>
<span class="nt"><vector</span> <span class="na">name=</span><span class="s">"wavefunction"</span> <span class="na">type=</span><span class="s">"complex"</span> <span class="na">dimensions=</span><span class="s">"x y j"</span><span class="nt">></span>
<span class="nt"><components></span> phi <span class="nt"></components></span>
<span class="nt"><initialisation></span>
<span class="cp"><![CDATA[</span>
<span class="n">phi</span> <span class="o">=</span> <span class="n">j</span><span class="o">*</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">/</span><span class="n">sqrt</span><span class="p">(</span><span class="n">M_PI</span><span class="o">/</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">exp</span><span class="p">(</span><span class="o">-</span><span class="p">(</span><span class="n">x</span><span class="o">*</span><span class="n">x</span><span class="o">+</span><span class="n">y</span><span class="o">*</span><span class="n">y</span><span class="p">)</span><span class="o">/</span><span class="mi">4</span><span class="p">)</span><span class="o">*</span><span class="n">exp</span><span class="p">(</span><span class="kc">i</span><span class="o">*</span><span class="mf">0.1</span><span class="o">*</span><span class="n">x</span><span class="p">);</span>
<span class="cp">]]></span>
<span class="nt"></initialisation></span>
<span class="nt"></vector></span>
<span class="nt"><vector</span> <span class="na">name=</span><span class="s">"spatialInteraction"</span> <span class="na">type=</span><span class="s">"real"</span> <span class="na">dimensions=</span><span class="s">"x y"</span><span class="nt">></span>
<span class="nt"><components></span> U <span class="nt"></components></span>
<span class="nt"><initialisation></span>
<span class="cp"><![CDATA[</span>
<span class="n">U</span><span class="o">=</span><span class="n">exp</span><span class="p">(</span><span class="o">-</span><span class="p">(</span><span class="n">x</span><span class="o">*</span><span class="n">x</span><span class="o">+</span><span class="n">y</span><span class="o">*</span><span class="n">y</span><span class="p">)</span><span class="o">/</span><span class="mi">4</span><span class="p">);</span>
<span class="cp">]]></span>
<span class="nt"></initialisation></span>
<span class="nt"></vector></span>
<span class="nt"><vector</span> <span class="na">name=</span><span class="s">"internalInteraction"</span> <span class="na">type=</span><span class="s">"real"</span> <span class="na">dimensions=</span><span class="s">"j k"</span><span class="nt">></span>
<span class="nt"><components></span> V <span class="nt"></components></span>
<span class="nt"><initialisation></span>
<span class="cp"><![CDATA[</span>
<span class="n">V</span><span class="o">=</span><span class="mi">3</span><span class="o">*</span><span class="p">(</span><span class="n">j</span><span class="o">*</span><span class="p">(</span><span class="mi">1</span><span class="o">-</span><span class="n">k</span><span class="p">)</span><span class="o">+</span><span class="p">(</span><span class="mi">1</span><span class="o">-</span><span class="n">j</span><span class="p">)</span><span class="o">*</span><span class="n">k</span><span class="p">);</span>
<span class="cp">]]></span>
<span class="nt"></initialisation></span>
<span class="nt"></vector></span>
<span class="nt"><computed_vector</span> <span class="na">name=</span><span class="s">"coupling"</span> <span class="na">dimensions=</span><span class="s">"x y j"</span> <span class="na">type=</span><span class="s">"complex"</span><span class="nt">></span>
<span class="nt"><components></span>
VPhi
<span class="nt"></components></span>
<span class="nt"><evaluation></span>
<span class="nt"><dependencies</span> <span class="na">basis=</span><span class="s">"x y j k"</span><span class="nt">></span>internalInteraction wavefunction<span class="nt"></dependencies></span>
<span class="cp"><![CDATA[</span>
<span class="c1">// Calculate the current normalisation of the wave function.</span>
<span class="n">VPhi</span> <span class="o">=</span> <span class="n">V</span><span class="o">*</span><span class="n">phi</span><span class="p">(</span><span class="n">j</span> <span class="o">=></span> <span class="n">k</span><span class="p">);</span>
<span class="cp">]]></span>
<span class="nt"></evaluation></span>
<span class="nt"></computed_vector></span>
<span class="nt"><sequence></span>
<span class="nt"><integrate</span> <span class="na">algorithm=</span><span class="s">"ARK45"</span> <span class="na">interval=</span><span class="s">"2.0"</span> <span class="na">tolerance=</span><span class="s">"1e-7"</span><span class="nt">></span>
<span class="nt"><samples></span>20 100<span class="nt"></samples></span>
<span class="nt"><operators></span>
<span class="nt"><integration_vectors></span>wavefunction<span class="nt"></integration_vectors></span>
<span class="nt"><operator</span> <span class="na">kind=</span><span class="s">"ip"</span> <span class="na">dimensions=</span><span class="s">"x"</span><span class="nt">></span>
<span class="nt"><operator_names></span>Lx<span class="nt"></operator_names></span>
<span class="cp"><![CDATA[</span>
<span class="n">Lx</span> <span class="o">=</span> <span class="o">-</span><span class="kc">i</span><span class="o">*</span><span class="n">kx</span><span class="o">*</span><span class="n">kx</span><span class="o">*</span><span class="mf">0.5</span><span class="p">;</span>
<span class="cp">]]></span>
<span class="nt"></operator></span>
<span class="nt"><operator</span> <span class="na">kind=</span><span class="s">"ip"</span> <span class="na">dimensions=</span><span class="s">"y"</span><span class="nt">></span>
<span class="nt"><operator_names></span>Ly<span class="nt"></operator_names></span>
<span class="cp"><![CDATA[</span>
<span class="n">Ly</span> <span class="o">=</span> <span class="o">-</span><span class="kc">i</span><span class="o">*</span><span class="n">ky</span><span class="o">*</span><span class="n">ky</span><span class="o">*</span><span class="mf">0.5</span><span class="p">;</span>
<span class="cp">]]></span>
<span class="nt"></operator></span>
<span class="cp"><![CDATA[</span>
<span class="n">dphi_dt</span> <span class="o">=</span> <span class="n">Lx</span><span class="p">[</span><span class="n">phi</span><span class="p">]</span> <span class="o">+</span> <span class="n">Ly</span><span class="p">[</span><span class="n">phi</span><span class="p">]</span> <span class="o">-</span><span class="kc">i</span><span class="o">*</span><span class="n">U</span><span class="o">*</span><span class="n">VPhi</span><span class="p">;</span>
<span class="cp">]]></span>
<span class="nt"><dependencies></span>spatialInteraction coupling<span class="nt"></dependencies></span>
<span class="nt"></operators></span>
<span class="nt"></integrate></span>
<span class="nt"></sequence></span>
<span class="nt"><output></span>
<span class="nt"><sampling_group</span> <span class="na">basis=</span><span class="s">"x y j"</span> <span class="na">initial_sample=</span><span class="s">"yes"</span><span class="nt">></span>
<span class="nt"><moments></span>density<span class="nt"></moments></span>
<span class="nt"><dependencies></span>wavefunction<span class="nt"></dependencies></span>
<span class="cp"><![CDATA[</span>
<span class="n">density</span> <span class="o">=</span> <span class="nf">mod2</span><span class="p">(</span><span class="n">phi</span><span class="p">);</span>
<span class="cp">]]></span>
<span class="nt"></sampling_group></span>
<span class="nt"><sampling_group</span> <span class="na">basis=</span><span class="s">"x(0) y(0) j"</span> <span class="na">initial_sample=</span><span class="s">"yes"</span><span class="nt">></span>
<span class="nt"><moments></span>normalisation<span class="nt"></moments></span>
<span class="nt"><dependencies></span>wavefunction<span class="nt"></dependencies></span>
<span class="cp"><![CDATA[</span>
<span class="n">normalisation</span> <span class="o">=</span> <span class="nf">mod2</span><span class="p">(</span><span class="n">phi</span><span class="p">);</span>
<span class="cp">]]></span>
<span class="nt"></sampling_group></span>
<span class="nt"></output></span>
<span class="nt"></simulation></span>
</pre></div>
</div>
<p id="index-14">The only truly new feature in this script is the “aliases” option on a dimension. The integer-valued dimension in this script indexes the components of the PDE (in this case only two). The <span class="math">\(V_{j k}\)</span> term is required to be a square array of dimension of this number of components. If we wrote the k-index of <span class="math">\(V_{j k}\)</span> using a separate <tt class="docutils literal"><span class="pre"><dimension></span></tt> element, then we would not be enforcing the requirement that the matrix be square. Instead, we note that we will be using multiple ‘copies’ of the j-dimension by using the “aliases” tag.</p>
<div class="highlight-xpdeint"><div class="highlight"><pre><span class="nt"><dimension</span> <span class="na">name=</span><span class="s">"j"</span> <span class="na">type=</span><span class="s">"integer"</span> <span class="na">lattice=</span><span class="s">"2"</span> <span class="na">domain=</span><span class="s">"(0,1)"</span> <span class="na">aliases=</span><span class="s">"k"</span><span class="nt">/></span>
</pre></div>
</div>
<p>This means that we can use the index “k”, which will have exactly the same properties as the “j” index. This is used to define the “V” function in the “internalInteraction” vector. Now, just as we use a computed vector to perform an integration over our fields, we use a computed vector to calculate the sum.</p>
<div class="highlight-xpdeint"><div class="highlight"><pre><span class="nt"><computed_vector</span> <span class="na">name=</span><span class="s">"coupling"</span> <span class="na">dimensions=</span><span class="s">"x y j"</span> <span class="na">type=</span><span class="s">"complex"</span><span class="nt">></span>
<span class="nt"><components></span>
VPhi
<span class="nt"></components></span>
<span class="nt"><evaluation></span>
<span class="nt"><dependencies</span> <span class="na">basis=</span><span class="s">"x y j k"</span><span class="nt">></span>internalInteraction wavefunction<span class="nt"></dependencies></span>
<span class="cp"><![CDATA[</span>
<span class="c1">// Calculate the current normalisation of the wave function.</span>
<span class="n">VPhi</span> <span class="o">=</span> <span class="n">V</span><span class="o">*</span><span class="n">phi</span><span class="p">(</span><span class="n">j</span> <span class="o">=></span> <span class="n">k</span><span class="p">);</span>
<span class="cp">]]></span>
<span class="nt"></evaluation></span>
<span class="nt"></computed_vector></span>
</pre></div>
</div>
<p>Since the output dimensions of the computed vector do not include a “k” index, this index is integrated. The volume element for this summation is the spacing between neighbouring values of “j”, and since this spacing is one, this integration is just a sum over k, as required.</p>
<p>This example also demonstrates an optimisation for the IP operators by separating the <span class="math">\(x\)</span> and <span class="math">\(y\)</span> parts of the operator (see <a class="reference internal" href="optimisation_hints.html#optimisingipoperators"><em>Optimising with the Interaction Picture (IP) operator</em></a>). This gives an approximately 30% speed improvement over the more straightforward implementation:</p>
<div class="highlight-xpdeint"><div class="highlight"><pre><span class="nt"><operator</span> <span class="na">kind=</span><span class="s">"ip"</span><span class="nt">></span>
<span class="nt"><operator_names></span>L<span class="nt"></operator_names></span>
<span class="cp"><![CDATA[</span>
<span class="n">L</span> <span class="o">=</span> <span class="o">-</span><span class="kc">i</span><span class="o">*</span><span class="p">(</span><span class="n">kx</span><span class="o">*</span><span class="n">kx</span> <span class="o">+</span> <span class="n">ky</span><span class="o">*</span><span class="n">ky</span><span class="p">)</span><span class="o">*</span><span class="mf">0.5</span><span class="p">;</span>
<span class="cp">]]></span>
<span class="nt"></operator></span>
<span class="cp"><![CDATA[</span>
<span class="n">dphi_dt</span> <span class="o">=</span> <span class="n">L</span><span class="p">[</span><span class="n">phi</span><span class="p">]</span> <span class="o">-</span> <span class="kc">i</span><span class="o">*</span><span class="n">U</span><span class="o">*</span><span class="n">VPhi</span><span class="p">;</span>
<span class="cp">]]></span>
</pre></div>
</div>
<p>By this point, we have introduced most of the important features in XMDS2. More details on other transform options and rarely used features can be found in the <a class="reference internal" href="advanced_topics.html#advancedtopics"><em>Advanced Topics</em></a> section.</p>
</div>
</div>
</div>
</div>
</div>
<div class="sphinxsidebar">
<div class="sphinxsidebarwrapper">
<p class="logo"><a href="index.html">
<img class="logo" src="_static/xmds_logo.png" alt="Logo"/>
</a></p>
<h3><a href="index.html">Table Of Contents</a></h3>
<ul>
<li><a class="reference internal" href="#">Worked Examples</a><ul>
<li><a class="reference internal" href="#the-nonlinear-schrodinger-equation">The nonlinear Schrödinger equation</a></li>
<li><a class="reference internal" href="#kubo-oscillator">Kubo Oscillator</a></li>
<li><a class="reference internal" href="#fibre-noise">Fibre Noise</a></li>
<li><a class="reference internal" href="#integer-dimensions">Integer Dimensions</a></li>
<li><a class="reference internal" href="#wigner-function">Wigner Function</a></li>
<li><a class="reference internal" href="#finding-the-ground-state-of-a-bec-continuous-renormalisation">Finding the Ground State of a BEC (continuous renormalisation)</a></li>
<li><a class="reference internal" href="#finding-the-ground-state-of-a-bec-again">Finding the Ground State of a BEC again</a></li>
<li><a class="reference internal" href="#multi-component-schrodinger-equation">Multi-component Schrödinger equation</a></li>
</ul>
</li>
</ul>
<div id="searchbox" style="display: none">
<h3>Quick search</h3>
<form class="search" action="search.html" method="get">
<input type="text" name="q" />
<input type="submit" value="Go" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
<p class="searchtip" style="font-size: 90%">
Enter search terms or a module, class or function name.
</p>
</div>
<script type="text/javascript">$('#searchbox').show(0);</script>
</div>
</div>
<div class="clearer"></div>
</div>
<div class="related">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
>index</a></li>
<li class="right" >
<a href="reference_index.html" title="Reference section"
>next</a> |</li>
<li class="right" >
<a href="tutorial.html" title="Quickstart Tutorial"
>previous</a> |</li>
<li><a href="index.html">XMDS2 2.2.2 documentation</a> »</li>
</ul>
</div>
<div class="footer">
© Copyright 2008-2014, Graham Dennis, Joe Hope and Mattias Johnsson. Licensed under the GNU FDL.
Last updated on Oct 14, 2014.
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 1.2b1.
</div>
</body>
</html>
|