1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
<?xml version="1.0" encoding="UTF-8"?>
<simulation xmds-version="2">
<name>vibstring3</name>
<author>Joe Hope</author>
<description>
Vibrating string
</description>
<features>
<benchmark />
<error_check />
<bing />
<fftw />
<globals>
<![CDATA[
const real T = 10.0;
const real mass = 1e-3;
const real length = 1.0;
const real mu = mass/length;
]]>
</globals>
</features>
<geometry>
<propagation_dimension> t </propagation_dimension>
<transverse_dimensions>
<dimension name="q" type="integer" lattice="2" domain="(0, 1)" />
<dimension name="x" lattice="100" domain="(0, 1)" />
<dimension name="y" lattice="100" domain="(0, 1)" />
<dimension name="z" lattice="100" domain="(0, 1)" />
<dimension name="w" type="integer" domain="(-3, 3)" />
</transverse_dimensions>
</geometry>
<vector name="main" dimensions="x y" initial_basis="x y" type="complex">
<components>
u uDot
</components>
<initialisation>
<![CDATA[
u = exp(-100.0*(x-0.5)*(x-0.5));
uDot = 0.0;
]]>
</initialisation>
</vector>
<vector name="integrated_u" dimensions="" type="complex">
<components>
mom
</components>
</vector>
<computed_vector name="filter1" dimensions="" type="complex">
<components>moment</components>
<!-- If the moments are of type 'real', then all dimensions that aren't integrated
must be evaluated in 'x' space. -->
<evaluation>
<dependencies basis="kx ky">integrated_u main</dependencies>
<![CDATA[
moment = mod2(u);
]]>
</evaluation>
</computed_vector>
<sequence>
<integrate algorithm="RK9" interval="2e-3" steps="100">
<samples>50 50</samples>
<computed_vector name="filter2" dimensions="" type="complex">
<components>sparemoment</components>
<!-- If the moments are of type 'real', then all dimensions that aren't integrated
must be evaluated in 'x' space. -->
<evaluation>
<dependencies basis="kx ky">integrated_u main</dependencies>
<![CDATA[
sparemoment = mod2(u);
]]>
</evaluation>
</computed_vector>
<operators> <!-- For the x y dimensions -->
<operator kind="ex">
<operator_names>L</operator_names>
<![CDATA[
L = -T*kx*kx/mu;
]]>
</operator>
<integration_vectors>main</integration_vectors>
<![CDATA[
du_dt = uDot;
duDot_dt = L[u /**/];
]]>
</operators>
<operators> <!-- For the zero-dimensional field -->
<integration_vectors>integrated_u</integration_vectors>
<dependencies>filter1</dependencies>
<![CDATA[
dmom_dt = moment;
]]>
</operators>
<filters>
<filter>
<dependencies>filter1 main</dependencies>
<![CDATA[
u = 1.0 * u;
]]>
</filter>
</filters>
</integrate>
</sequence>
<output>
<sampling_group basis="x y" initial_sample="yes">
<computed_vector name="filter3" dimensions="" type="complex">
<components>sparemomentagain</components>
<!-- If the moments are of type 'real', then all dimensions that aren't integrated
must be evaluated in 'x' space. -->
<evaluation>
<dependencies basis="kx ky">integrated_u main</dependencies>
<![CDATA[
sparemomentagain = mod2(u);
]]>
</evaluation>
</computed_vector>
<operator kind="ex">
<operator_names>L</operator_names>
<![CDATA[
L = -T*kx*kx/mu;
]]>
</operator>
<moments>amp ke</moments>
<dependencies>main filter1</dependencies>
<![CDATA[
amp = mod2(u + moment);
ke = mod2(L[u]);
]]>
</sampling_group>
<sampling_group initial_sample="no">
<moments>momR momentR</moments>
<dependencies>integrated_u filter1</dependencies>
<![CDATA[
momR = mom.Re();
momentR = moment.Re();
]]>
</sampling_group>
</output>
</simulation>
|