1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
|
<?xml version="1.0" encoding="UTF-8"?>
<simulation xmds-version="2">
<testing>
<xsil_file name="groundstate.xsil" expected="groundstate_expected.xsil" absolute_tolerance="1e-7" relative_tolerance="1e-5" />
<xsil_file name="groundstate_break.xsil" expected="groundstate_expected_break.xsil" absolute_tolerance="1e-7" relative_tolerance="1e-5" />
</testing>
<name>groundstate</name>
<author>Graham Dennis</author>
<description>
Calculate the ground state of a negative gaussian potential.
</description>
<features>
<auto_vectorise />
<benchmark />
<bing />
<fftw plan="patient" />
</features>
<geometry>
<propagation_dimension> t </propagation_dimension>
<transverse_dimensions>
<dimension name="y" lattice="1024" domain="(-12.0, 12.0)" />
</transverse_dimensions>
</geometry>
<vector name="potential" initial_basis="y" type="complex">
<components>
V1
</components>
<initialisation>
<![CDATA[
real Vtrap = -exp(-y*y);
V1 = -i*Vtrap;
]]>
</initialisation>
</vector>
<vector name="wavefunction" initial_basis="y" type="complex">
<components>
phi
</components>
<initialisation>
<![CDATA[
// This will be automatically normalised later
phi = exp(-y*y);
]]>
</initialisation>
</vector>
<computed_vector name="normalisation" dimensions="" type="real">
<components> Ncalc </components>
<evaluation>
<dependencies basis="y">wavefunction</dependencies>
<![CDATA[
// Calculate the current normalisation of the wave function.
Ncalc = norm(phi);
]]>
</evaluation>
</computed_vector>
<sequence>
<integrate algorithm="RK4" interval="1.0" steps="1000">
<samples>50 50 50</samples>
<filters>
<filter>
<dependencies>wavefunction normalisation</dependencies>
<![CDATA[
// Correct normalisation of the wavefunction
phi *= sqrt(1.0/Ncalc);
]]>
</filter>
</filters>
<operators>
<operator kind="ip" constant="yes">
<operator_names>T</operator_names>
<![CDATA[
T = -0.5*ky*ky;
]]>
</operator>
<integration_vectors>wavefunction</integration_vectors>
<dependencies>potential</dependencies>
<![CDATA[
dphi_dt = T[phi] - (i*V1)*phi;
]]>
</operators>
</integrate>
<breakpoint filename="groundstate_break.xsil">
<dependencies>wavefunction potential</dependencies>
</breakpoint>
</sequence>
<output format="binary">
<group>
<sampling basis="y" initial_sample="no">
<moments>dens</moments>
<dependencies>wavefunction</dependencies>
<![CDATA[
dens = norm(phi);
]]>
</sampling>
</group>
<group>
<sampling initial_sample="no">
<moments>N</moments>
<dependencies>normalisation</dependencies>
<![CDATA[
N = Ncalc;
]]>
</sampling>
</group>
<group>
<sampling basis="y(0)" initial_sample="no">
<moments>N</moments>
<dependencies>wavefunction</dependencies>
<![CDATA[
N = norm(phi);
]]>
</sampling>
</group>
</output>
</simulation>
|