File: groundstate.xmds

package info (click to toggle)
xmds2 2.2.2%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 53,384 kB
  • ctags: 7,223
  • sloc: python: 54,076; cpp: 3,929; ansic: 1,463; makefile: 135; sh: 20
file content (126 lines) | stat: -rw-r--r-- 3,372 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
<?xml version="1.0" encoding="UTF-8"?>
<simulation xmds-version="2">
  <testing>
    <xsil_file name="groundstate.xsil" expected="groundstate_expected.xsil" absolute_tolerance="1e-7" relative_tolerance="1e-5" />
    <xsil_file name="groundstate_break.xsil" expected="groundstate_expected_break.xsil" absolute_tolerance="1e-7" relative_tolerance="1e-5" />
  </testing>
  
  <name>groundstate</name>
  <author>Graham Dennis</author>
  <description>
    Calculate the ground state of a negative gaussian potential.
  </description>
  
  <features>
    <auto_vectorise />
    <benchmark />
    <bing />
    <fftw plan="patient" />
  </features>
  
  <geometry>
    <propagation_dimension> t </propagation_dimension>
    <transverse_dimensions>
      <dimension name="y" lattice="1024"  domain="(-12.0, 12.0)" />
    </transverse_dimensions>
  </geometry>
  
  <vector name="potential" initial_basis="y" type="complex">
    <components>
      V1
    </components>
    <initialisation>
      <![CDATA[
        real Vtrap = -exp(-y*y);
      
        V1  = -i*Vtrap;
      
      ]]>
    </initialisation>
  </vector>
  
  <vector name="wavefunction" initial_basis="y" type="complex">
    <components>
      phi
    </components>
    <initialisation>
      <![CDATA[
      
      // This will be automatically normalised later
      phi = exp(-y*y);
      ]]>
    </initialisation>
  </vector>
  
  <computed_vector name="normalisation" dimensions="" type="real">
    <components> Ncalc </components>
    <evaluation>
      <dependencies basis="y">wavefunction</dependencies>
      <![CDATA[
        // Calculate the current normalisation of the wave function.
        Ncalc = norm(phi);
      ]]>
    </evaluation>
  </computed_vector>
  
  <sequence>
    <integrate algorithm="RK4" interval="1.0" steps="1000">
      <samples>50 50 50</samples>
      <filters>
        <filter>
          <dependencies>wavefunction normalisation</dependencies>
          <![CDATA[
            // Correct normalisation of the wavefunction
            phi *= sqrt(1.0/Ncalc);
          ]]>
        </filter>
      </filters>
      <operators>
        <operator kind="ip" constant="yes">
          <operator_names>T</operator_names>
          <![CDATA[
            T = -0.5*ky*ky;
          ]]>
        </operator>
        <integration_vectors>wavefunction</integration_vectors>
        <dependencies>potential</dependencies>
        <![CDATA[
          dphi_dt = T[phi] - (i*V1)*phi;
        ]]>
      </operators>
    </integrate>
    <breakpoint filename="groundstate_break.xsil">
      <dependencies>wavefunction potential</dependencies>
    </breakpoint>
  </sequence>
  
  <output format="binary">
    <group>
      <sampling basis="y" initial_sample="no">
        <moments>dens</moments>
        <dependencies>wavefunction</dependencies>
        <![CDATA[
          dens = norm(phi);
        ]]>
      </sampling>
    </group>
    <group>
      <sampling initial_sample="no">
        <moments>N</moments>
        <dependencies>normalisation</dependencies>
        <![CDATA[
          N = Ncalc;
        ]]>
      </sampling>
    </group>
    <group>
      <sampling basis="y(0)" initial_sample="no">
        <moments>N</moments>
        <dependencies>wavefunction</dependencies>
        <![CDATA[
          N = norm(phi);
        ]]>
      </sampling>
    </group>
  </output>
</simulation>